import RT-Thread@9217865c without bsp, libcpu and components/net

This commit is contained in:
Zihao Yu 2023-05-20 16:23:33 +08:00
commit e2376a3709
1414 changed files with 390370 additions and 0 deletions

View file

@ -0,0 +1,15 @@
menuconfig RT_USING_CPLUSPLUS
bool "Enable C++ features"
default n
if RT_USING_CPLUSPLUS
config RT_USING_CPLUSPLUS11
bool "Enable c++11 threading feature support"
default n
select RT_USING_POSIX_FS
select RT_USING_POSIX_STDIO
select RT_USING_PTHREADS
select RT_USING_RTC
endif

View file

@ -0,0 +1,52 @@
# C++ support for RT-Thread #
This is the C++ component in RT-Thread RTOS. In order to support C++ language, this component
implement a basic environment, such as new/delete operators.
Because RT-Thread RTOS is used in embedded system mostly, there are some rules for C++ applications:
1. DOES NOT use exception.
2. DOES NOT use Run-Time Type Information (RTTI).
3. Template is discouraged and it easily causes code text large.
4. Static class variables are discouraged. The time and place to call their constructor function could not be precisely controlled and make multi-threaded programming a nightmare.
5. Multiple inheritance is strongly discouraged, as it can cause intolerable confusion.
About GNU GCC compiler
please add following string in your ld link script:
// in your .text section
PROVIDE(__ctors_start__ = .);
/* old GCC version uses .ctors */
KEEP(*(SORT(.ctors.*)))
KEEP(*(.ctors))
/* new GCC version uses .init_array */
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
PROVIDE(__ctors_end__ = .);
. = ALIGN(4);
// as a standalone section if you use ARM target.
/* The .ARM.exidx section is used for C++ exception handling. */
/* .ARM.exidx is sorted, so has to go in its own output section. */
__exidx_start = .;
ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
/* This is used by the startup in order to initialize the .data secion */
_sidata = .;
} > CODE
__exidx_end = .;
/* .data section which is used for initialized data */
// in your .data section
PROVIDE(__dtors_start__ = .);
KEEP(*(SORT(.dtors.*)))
KEEP(*(.dtors))
PROVIDE(__dtors_end__ = .);
. = ALIGN(4);

View file

@ -0,0 +1,21 @@
# RT-Thread building script for component
from building import *
Import('rtconfig')
cwd = GetCurrentDir()
src = Glob('*.cpp') + Glob('*.c')
CPPPATH = [cwd]
if GetDepend('RT_USING_CPLUSPLUS11'):
src += Glob('cpp11/*.cpp') + Glob('cpp11/*.c')
if rtconfig.PLATFORM in ['armclang']:
src += Glob('cpp11/armclang/*.cpp') + Glob('cpp11/armclang/*.c')
CPPPATH += [cwd + '/cpp11/armclang']
elif rtconfig.PLATFORM in ['gcc']:
src += Glob('cpp11/gcc/*.cpp') + Glob('cpp11/gcc/*.c')
CPPPATH += [cwd + '/cpp11/gcc']
group = DefineGroup('CPlusPlus', src, depend = ['RT_USING_CPLUSPLUS'], CPPPATH = CPPPATH)
Return('group')

View file

@ -0,0 +1,49 @@
# C++ 11 support for RT-Thread
## Features
Here are some features about rt-thread c++11 threading futures.
- Atomic.
- Conditional variables.
- Clocks.
- Future.
- Mutexes.
- Threads.
- TLS.
## How To Use
Note that using C++ 11 in rt-thread requires modifying some of the files in the toolchain. Before modifying the tool, back up the tool chain.
1. Enable c++11 support
![](figures/Snipaste_2021-09-02_16-00-09.png)
2. Download toolchain GCC 10.2.1:
```shell
gcc version 10.2.1 20201103 (release) (GNU Arm Embedded Toolchain 10-2020-q4-major)
```
3. Delete the following files:
```shell
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/thread
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/mutex
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/condition_variable
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/future
rm -f toolchain/arm-none-eabi/include/pthread.h
```
4. Clear the contents of the following files and keep them to prevent compilation failures:
```shell
toolchain/arm-none-eabi/include/sys/_pthreadtypes.h
```
5. Update `rtconfig.py` file. add compilation parameters:
```shell
CXXFLAGS = CFLAGS + ' -std=c++11 -fabi-version=0 -MMD -MP -MF'
```

View file

@ -0,0 +1,48 @@
# cpp 11 support for rt-thread
## 特性
下面是 RT-Thread 支持的 C++ 11 线程特性。
- Atomic.
- Conditional variables.
- Clocks.
- Future.
- Mutexes.
- Threads.
- TLS.
## 如何使用
请注意,在 RT-Thread 中使用 C++ 11需要修改工具链中的部分文件。请在修改之前备份好工具链。
1. 使能 c++11
![](figures/Snipaste_2021-09-02_16-00-09.png)
2. 下载 GCC 工具链
```shell
gcc version 10.2.1 20201103 (release) (GNU Arm Embedded Toolchain 10-2020-q4-major)
```
3. 删除下面的文件
```shell
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/thread
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/mutex
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/condition_variable
rm -f toolchain/arm-none-eabi/include/c++/10.2.1/future
rm -f toolchain/arm-none-eabi/include/pthread.h
```
4. 请清除下面文件的内容,保留文件避免编译失败
```shell
toolchain/arm-none-eabi/include/sys/_pthreadtypes.h
```
5. 更新 `rtconfig.py` 文件,添加 c++ 编译参数:
```shell
CXXFLAGS = CFLAGS + ' -std=c++11 -fabi-version=0 -MMD -MP -MF'
```

View file

@ -0,0 +1,29 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include <arm-tpl.h>
#include <sys/time.h>
#include <rtthread.h>
extern "C" int __ARM_TPL_clock_realtime(__ARM_TPL_timespec_t* __ts)
{
unsigned int t = std::time(nullptr);
__ts->tv_sec = t;
__ts->tv_nsec = 0;
return 0;
}
extern "C" int __ARM_TPL_clock_monotonic(__ARM_TPL_timespec_t* __ts)
{
unsigned int t = rt_tick_get();
__ts->tv_sec = t / RT_TICK_PER_SECOND;
__ts->tv_nsec = (t %RT_TICK_PER_SECOND) * NANOSECOND_PER_TICK ;
return 0;
}

View file

@ -0,0 +1,178 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include <arm-tpl.h>
#include "tpl.h"
#include <new>
#include <cstdint>
#include <stdatomic.h>
arm_tpl_cv::arm_tpl_cv()
{
s = rt_sem_create("semxs", 0, RT_IPC_FLAG_PRIO);
if (s == nullptr)
RT_ASSERT(0);
h = rt_sem_create("semxh", 0, RT_IPC_FLAG_PRIO);
if (h == nullptr)
{
rt_sem_delete(s);
RT_ASSERT(0);
}
x = rt_mutex_create("mutx", RT_IPC_FLAG_PRIO);
if (x == nullptr)
{
rt_sem_delete(s);
rt_sem_delete(h);
RT_ASSERT(0);
}
}
arm_tpl_cv::~arm_tpl_cv()
{
rt_mutex_delete(x);
rt_sem_delete(h);
rt_sem_delete(s);
}
void arm_tpl_cv::wait(rt_mutex_t lock, bool recursive)
{
while (rt_mutex_take(x, ARM_TPL_MAX_DELAY) != 0);
rt_sem_release(s);
rt_mutex_release(x);
if (recursive)
rt_mutex_release(lock);
else
rt_mutex_release(lock);
while (rt_sem_take(h, ARM_TPL_MAX_DELAY) != 0);
if (recursive)
while (rt_mutex_take(lock, ARM_TPL_MAX_DELAY) != 0);
else
while (rt_mutex_take(lock, ARM_TPL_MAX_DELAY) != 0);
}
int arm_tpl_cv::timedwait(rt_mutex_t lock, bool recursive, unsigned int timeout_ms)
{
int result = 0;
while (rt_mutex_take(x, ARM_TPL_MAX_DELAY) != 0);
rt_sem_release(s);
rt_mutex_release(x);
if (recursive)
rt_mutex_release(lock);
else
rt_mutex_release(lock);
if (rt_sem_take(h, rt_tick_from_millisecond(timeout_ms)) != 0)
{
while (rt_mutex_take(x, ARM_TPL_MAX_DELAY) != 0);
if (rt_sem_take(h, 0) != 0)
{
if (rt_sem_take(s, 0) != 0)
result = -1;
else
result = 1;
}
rt_mutex_release(x);
}
if (recursive)
while (rt_mutex_take(lock, ARM_TPL_MAX_DELAY) != 0);
else
while (rt_mutex_take(lock, ARM_TPL_MAX_DELAY) != 0);
return result;
}
void arm_tpl_cv::signal()
{
while (rt_mutex_take(x, ARM_TPL_MAX_DELAY) != 0);
if (rt_sem_take(s, 0) == 0)
rt_sem_release(h);
rt_mutex_release(x);
}
void arm_tpl_cv::broadcast()
{
while (rt_mutex_take(x, ARM_TPL_MAX_DELAY) != 0);
auto count = s->value;
for (auto i = 0; i < count; i++)
{
while (rt_sem_take(s, ARM_TPL_MAX_DELAY) != 0);
rt_sem_release(h);
}
rt_mutex_release(x);
}
static int check_create(volatile __ARM_TPL_condvar_t *__vcv)
{
if (__vcv->data == 0)
{
uintptr_t cv_new;
cv_new = reinterpret_cast<uintptr_t>(new arm_tpl_cv());
if (cv_new == 0)
{
return -1;
}
uintptr_t cv_null = 0;
if (!atomic_compare_exchange_strong(&__vcv->data, &cv_null, cv_new))
delete reinterpret_cast<arm_tpl_cv *>(cv_new);
}
return 0;
}
extern "C" int __ARM_TPL_condvar_wait(__ARM_TPL_condvar_t *__cv, __ARM_TPL_mutex_t *__m)
{
volatile __ARM_TPL_condvar_t *__vcv = __cv;
if (check_create(__vcv) != 0)
return -1;
struct arm_tpl_mutex_struct *tmutex = (struct arm_tpl_mutex_struct *)(__m->data);
((arm_tpl_cv *) __vcv->data)->wait(tmutex->mutex, tmutex->type == RECURSIVE);
return 0;
}
extern "C" int __ARM_TPL_condvar_timedwait(__ARM_TPL_condvar_t *__cv,
__ARM_TPL_mutex_t *__m,
__ARM_TPL_timespec_t *__ts)
{
volatile __ARM_TPL_condvar_t *__vcv = __cv;
if (check_create(__vcv) != 0)
return -1;
__ARM_TPL_timespec_t now;
if (__ARM_TPL_clock_realtime(&now) != 0)
return -1;
struct arm_tpl_mutex_struct *tmutex = (struct arm_tpl_mutex_struct *)(__m->data);
unsigned int timeout_ms = (__ts->tv_sec - now.tv_sec) * 1000 + (__ts->tv_nsec - now.tv_nsec) / 1000000;
if (((arm_tpl_cv *) __vcv->data)->timedwait(tmutex->mutex, tmutex->type == RECURSIVE, timeout_ms) < 0)
return -1;
return 0;
}
extern "C" int __ARM_TPL_condvar_signal(__ARM_TPL_condvar_t *__cv)
{
volatile __ARM_TPL_condvar_t *__vcv = __cv;
if (__vcv->data != 0)
((arm_tpl_cv *) __vcv->data)->signal();
return 0;
}
extern "C" int __ARM_TPL_condvar_broadcast(__ARM_TPL_condvar_t *__cv)
{
volatile __ARM_TPL_condvar_t *__vcv = __cv;
if (__vcv->data != 0)
((arm_tpl_cv *) __vcv->data)->broadcast();
return 0;
}
extern "C" int __ARM_TPL_condvar_destroy(__ARM_TPL_condvar_t *__cv)
{
volatile __ARM_TPL_condvar_t *__vcv = __cv;
if (__vcv->data != 0)
{
delete (arm_tpl_cv *) __vcv->data;
__vcv->data = 0;
}
return 0;
}

View file

@ -0,0 +1,22 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include <arm-tpl.h>
extern "C" int __ARM_TPL_execute_once(__ARM_TPL_exec_once_flag *__flag,
void (*__init_routine)(void))
{
if (*__flag == 0)
{
__init_routine();
*__flag = 1;
}
return 0;
}

View file

@ -0,0 +1,108 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include <arm-tpl.h>
#include <cstdint>
#include <stdatomic.h>
#include "tpl.h"
static int check_create(volatile __ARM_TPL_mutex_t *__vm, bool recursive = false)
{
if (__vm->data == 0)
{
uintptr_t mut_null = 0;
arm_tpl_mutex_struct *mutex_p = (arm_tpl_mutex_struct *)rt_malloc(sizeof(arm_tpl_mutex_struct));
if (mutex_p == nullptr) return -1;
if (recursive)
mutex_p->mutex = rt_mutex_create("mutexx", RT_IPC_FLAG_PRIO);
else
mutex_p->mutex = rt_mutex_create("mutexx", RT_IPC_FLAG_PRIO);
if (mutex_p->mutex == nullptr)
{
rt_free(mutex_p);
return -1;
}
mutex_p->type = recursive ? RECURSIVE : NORMAL;
uintptr_t mut_new = reinterpret_cast<uintptr_t>(mutex_p);
if (!atomic_compare_exchange_strong(&__vm->data, &mut_null, mut_new))
{
rt_mutex_delete(mutex_p->mutex);
rt_free(mutex_p);
}
}
return 0;
}
static int mutexLock(arm_tpl_mutex_struct *mutex_p, rt_tick_t timeOut)
{
if (mutex_p->type == RECURSIVE)
{
if (rt_mutex_take(mutex_p->mutex, timeOut) == 0)
return 0;
}
else
{
if (rt_mutex_take(mutex_p->mutex, timeOut) == 0)
return 0;
}
return -1;
}
static int mutexUnlock(arm_tpl_mutex_struct *mutex_p)
{
if (mutex_p->type == RECURSIVE)
rt_mutex_release(mutex_p->mutex);
else
rt_mutex_release(mutex_p->mutex);
return 0;
}
extern "C" int __ARM_TPL_recursive_mutex_init(__ARM_TPL_mutex_t *__m)
{
volatile __ARM_TPL_mutex_t *__vm = __m;
return check_create(__vm, true);
}
extern "C" int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t *__m)
{
volatile __ARM_TPL_mutex_t *__vm = __m;
if (check_create(__vm))
return -1;
while (mutexLock((arm_tpl_mutex_struct *)(__vm->data), ARM_TPL_MAX_DELAY) != 0);
return 0;
}
extern "C" int __ARM_TPL_mutex_trylock(__ARM_TPL_mutex_t *__m)
{
volatile __ARM_TPL_mutex_t *__vm = __m;
if (check_create(__vm))
return -1;
return mutexLock((arm_tpl_mutex_struct *)(__vm->data), 0);
}
extern "C" int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t *__m)
{
volatile __ARM_TPL_mutex_t *__vm = __m;
return mutexUnlock((arm_tpl_mutex_struct *)(__vm->data));
}
extern "C" int __ARM_TPL_mutex_destroy(__ARM_TPL_mutex_t *__m)
{
volatile __ARM_TPL_mutex_t *__vm = __m;
if (__vm->data != 0)
{
rt_mutex_delete(((arm_tpl_mutex_struct *)(__vm->data))->mutex);
rt_free((void *)(__vm->data));
__vm->data = 0;
}
return 0;
}

View file

@ -0,0 +1,120 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include <arm-tpl.h>
#include "tpl.h"
#include <cstdio>
#include <pthread.h>
#define CPP11_DEFAULT_ID_OFFSET 1
extern "C" int __ARM_TPL_thread_create(__ARM_TPL_thread_t *__t,
void *(*__func)(void *),
void *__arg)
{
int ret = 0;
pthread_t pid;
ret = pthread_create(&pid, RT_NULL, __func, __arg);
if (ret == 0)
{
__t->data = (std::uintptr_t)pid + CPP11_DEFAULT_ID_OFFSET;
return 0;
}
return -1;
}
extern "C" int __ARM_TPL_thread_id_compare(__ARM_TPL_thread_id __tid1,
__ARM_TPL_thread_id __tid2)
{
if (__tid1 > __tid2)
return 1;
else if (__tid1 < __tid2)
return -1;
else
return 0;
}
extern "C" __ARM_TPL_thread_id __ARM_TPL_thread_get_current_id()
{
return (__ARM_TPL_thread_id)pthread_self();
}
extern "C" __ARM_TPL_thread_id __ARM_TPL_thread_get_id(
const __ARM_TPL_thread_t *__t)
{
return (__ARM_TPL_thread_id)(((pthread_t)__t->data - CPP11_DEFAULT_ID_OFFSET));
}
extern "C" int __ARM_TPL_thread_join(__ARM_TPL_thread_t *__t)
{
pthread_join(((pthread_t)__t->data - CPP11_DEFAULT_ID_OFFSET), RT_NULL);
return 0;
}
extern "C" int __ARM_TPL_thread_detach(__ARM_TPL_thread_t *__t)
{
pthread_detach(((pthread_t)__t->data - CPP11_DEFAULT_ID_OFFSET));
return 0;
}
extern "C" void __ARM_TPL_thread_yield()
{
rt_thread_yield();
}
extern "C" int __ARM_TPL_thread_nanosleep(const __ARM_TPL_timespec_t *__req,
__ARM_TPL_timespec_t *__rem)
{
rt_tick_t tick;
tick = __req->tv_sec * RT_TICK_PER_SECOND + (__req->tv_nsec * RT_TICK_PER_SECOND)/ 1000000000;
rt_thread_delay(tick);
if (__rem)
{
tick = rt_tick_get() - tick;
/* get the passed time */
__rem->tv_sec = tick/RT_TICK_PER_SECOND;
__rem->tv_nsec = (tick%RT_TICK_PER_SECOND) * (1000000000/RT_TICK_PER_SECOND);
}
return 0;
}
extern "C" unsigned __ARM_TPL_thread_hw_concurrency()
{
return 1;
}
extern "C" int __ARM_TPL_tls_create(__ARM_TPL_tls_key *__key,
void (*__at_exit)(void *))
{
pthread_key_t key;
if (pthread_key_create(&key, __at_exit) == 0)
{
*__key = key;
return 0;
}
return -1;
}
extern "C" void *__ARM_TPL_tls_get(__ARM_TPL_tls_key __key)
{
return pthread_getspecific(__key);
}
extern "C" int __ARM_TPL_tls_set(__ARM_TPL_tls_key __key, void *__p)
{
if (pthread_setspecific(__key, (void*)__p) != 0)
{
return -1;
}
return 0;
}

View file

@ -0,0 +1,56 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#pragma once
#ifndef __cplusplus
void ARMTPLInit();
#else
#include <rtthread.h>
#define ARM_TPL_MAX_DELAY 1000
#define ARM_TPL_THREAD_STACK_SIZE 4096
enum arm_tpl_mutex_type
{
NORMAL,
RECURSIVE,
};
struct arm_tpl_mutex_struct
{
rt_mutex_t mutex;
arm_tpl_mutex_type type;
};
struct arm_tpl_thread_struct
{
rt_thread_t task;
void *(*func)(void *);
void *arg;
rt_sem_t join_sem;
rt_sem_t detach_sem;
};
class arm_tpl_cv
{
public:
arm_tpl_cv();
~arm_tpl_cv();
void wait(rt_mutex_t lock, bool recursive);
int timedwait(rt_mutex_t lock, bool recursive, unsigned int timeout_ms);
void signal();
void broadcast();
private:
rt_sem_t s;
rt_sem_t h;
rt_mutex_t x;
};
#endif

View file

@ -0,0 +1,88 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 peterfan Add copyright header.
*/
#include <rthw.h>
#include <stdint.h>
#include <stdbool.h>
/*
* override gcc builtin atomic function for std::atomic<int64_t>, std::atomic<uint64_t>
* @see https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
*/
uint64_t __atomic_load_8(volatile void *ptr, int memorder)
{
volatile uint64_t *val_ptr = (volatile uint64_t *)ptr;
rt_base_t level;
uint64_t tmp;
level = rt_hw_interrupt_disable();
tmp = *val_ptr;
rt_hw_interrupt_enable(level);
return tmp;
}
void __atomic_store_8(volatile void *ptr, uint64_t val, int memorder)
{
volatile uint64_t *val_ptr = (volatile uint64_t *)ptr;
rt_base_t level;
level = rt_hw_interrupt_disable();
*val_ptr = val;
rt_hw_interrupt_enable(level);
}
uint64_t __atomic_exchange_8(volatile void *ptr, uint64_t val, int memorder)
{
volatile uint64_t *val_ptr = (volatile uint64_t *)ptr;
rt_base_t level;
uint64_t tmp;
level = rt_hw_interrupt_disable();
tmp = *val_ptr;
*val_ptr = val;
rt_hw_interrupt_enable(level);
return tmp;
}
bool __atomic_compare_exchange_8(volatile void *ptr, volatile void *expected, uint64_t desired, bool weak, int success_memorder, int failure_memorder)
{
volatile uint64_t *val_ptr = (volatile uint64_t *)ptr;
volatile uint64_t *expected_ptr = (volatile uint64_t *)expected;
rt_base_t level;
bool exchanged;
level = rt_hw_interrupt_disable();
if (*val_ptr == *expected_ptr)
{
*val_ptr = desired;
exchanged = true;
}
else
{
*expected_ptr = *val_ptr;
exchanged = false;
}
rt_hw_interrupt_enable(level);
return exchanged;
}
#define __atomic_fetch_op_8(OPNAME, OP) \
uint64_t __atomic_fetch_##OPNAME##_8(volatile void *ptr, uint64_t val, int memorder) {\
volatile uint64_t* val_ptr = (volatile uint64_t*)ptr;\
rt_base_t level;\
uint64_t tmp;\
level = rt_hw_interrupt_disable();\
tmp = *val_ptr;\
*val_ptr OP##= val;\
rt_hw_interrupt_enable(level);\
return tmp;\
}
__atomic_fetch_op_8(add, +)
__atomic_fetch_op_8(sub, -)
__atomic_fetch_op_8( and, &)
__atomic_fetch_op_8( or, |)
__atomic_fetch_op_8(xor, ^)

View file

@ -0,0 +1,208 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 peterfan Add copyright header.
*/
/* ===---------- emutls.c - Implements __emutls_get_address ---------------===
*
* The LLVM Compiler Infrastructure
*
* This file is dual licensed under the MIT and the University of Illinois Open
* Source Licenses. See LICENSE.TXT for details.
*
* ===----------------------------------------------------------------------===
*/
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
extern int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));
extern int pthread_key_delete(pthread_key_t key);
extern void *pthread_getspecific(pthread_key_t key);
extern int pthread_setspecific(pthread_key_t key, const void *value);
/* Default is not to use posix_memalign, so systems like Android
* can use thread local data without heavier POSIX memory allocators.
*/
#ifndef EMUTLS_USE_POSIX_MEMALIGN
#define EMUTLS_USE_POSIX_MEMALIGN 0
#endif
/* For every TLS variable xyz,
* there is one __emutls_control variable named __emutls_v.xyz.
* If xyz has non-zero initial value, __emutls_v.xyz's "value"
* will point to __emutls_t.xyz, which has the initial value.
*/
typedef struct __emutls_control
{
size_t size; /* size of the object in bytes */
size_t align; /* alignment of the object in bytes */
union
{
uintptr_t index; /* data[index-1] is the object address */
void *address; /* object address, when in single thread env */
} object;
void *value; /* null or non-zero initial value for the object */
} __emutls_control;
static __inline void *emutls_memalign_alloc(size_t align, size_t size)
{
void *base;
#if EMUTLS_USE_POSIX_MEMALIGN
if (posix_memalign(&base, align, size) != 0)
abort();
#else
#define EXTRA_ALIGN_PTR_BYTES (align - 1 + sizeof(void *))
char *object;
if ((object = (char *)malloc(EXTRA_ALIGN_PTR_BYTES + size)) == NULL)
abort();
base = (void *)(((uintptr_t)(object + EXTRA_ALIGN_PTR_BYTES)) & ~(uintptr_t)(align - 1));
((void **)base)[-1] = object;
#endif
return base;
}
static __inline void emutls_memalign_free(void *base)
{
#if EMUTLS_USE_POSIX_MEMALIGN
free(base);
#else
/* The mallocated address is in ((void**)base)[-1] */
free(((void **)base)[-1]);
#endif
}
/* Emulated TLS objects are always allocated at run-time. */
static __inline void *emutls_allocate_object(__emutls_control *control)
{
size_t size = control->size;
size_t align = control->align;
if (align < sizeof(void *))
align = sizeof(void *);
/* Make sure that align is power of 2. */
if ((align & (align - 1)) != 0)
abort();
void *base = emutls_memalign_alloc(align, size);
if (control->value)
memcpy(base, control->value, size);
else
memset(base, 0, size);
return base;
}
static pthread_mutex_t emutls_mutex = PTHREAD_MUTEX_INITIALIZER;
static size_t emutls_num_object = 0; /* number of allocated TLS objects */
typedef struct emutls_address_array
{
uintptr_t size; /* number of elements in the 'data' array */
void *data[];
} emutls_address_array;
static pthread_key_t emutls_pthread_key;
static void emutls_key_destructor(void *ptr)
{
emutls_address_array *array = (emutls_address_array *)ptr;
uintptr_t i;
for (i = 0; i < array->size; ++i)
{
if (array->data[i])
emutls_memalign_free(array->data[i]);
}
free(ptr);
}
static void emutls_init(void)
{
if (pthread_key_create(&emutls_pthread_key, emutls_key_destructor) != 0)
abort();
}
/* Returns control->object.index; set index if not allocated yet. */
static __inline uintptr_t emutls_get_index(__emutls_control *control)
{
uintptr_t index = __atomic_load_n(&control->object.index, __ATOMIC_ACQUIRE);
if (!index)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, emutls_init);
pthread_mutex_lock(&emutls_mutex);
index = control->object.index;
if (!index)
{
index = ++emutls_num_object;
__atomic_store_n(&control->object.index, index, __ATOMIC_RELEASE);
}
pthread_mutex_unlock(&emutls_mutex);
}
return index;
}
/* Updates newly allocated thread local emutls_address_array. */
static __inline void emutls_check_array_set_size(emutls_address_array *array,
uintptr_t size)
{
if (array == NULL)
abort();
array->size = size;
pthread_setspecific(emutls_pthread_key, (void *)array);
}
/* Returns the new 'data' array size, number of elements,
* which must be no smaller than the given index.
*/
static __inline uintptr_t emutls_new_data_array_size(uintptr_t index)
{
/* Need to allocate emutls_address_array with one extra slot
* to store the data array size.
* Round up the emutls_address_array size to multiple of 16.
*/
return ((index + 1 + 15) & ~((uintptr_t)15)) - 1;
}
/* Returns the thread local emutls_address_array.
* Extends its size if necessary to hold address at index.
*/
static __inline emutls_address_array *
emutls_get_address_array(uintptr_t index)
{
emutls_address_array *array = pthread_getspecific(emutls_pthread_key);
if (array == NULL)
{
uintptr_t new_size = emutls_new_data_array_size(index);
array = (emutls_address_array *)calloc(new_size + 1, sizeof(void *));
emutls_check_array_set_size(array, new_size);
}
else if (index > array->size)
{
uintptr_t orig_size = array->size;
uintptr_t new_size = emutls_new_data_array_size(index);
array = (emutls_address_array *)realloc(array, (new_size + 1) * sizeof(void *));
if (array)
memset(array->data + orig_size, 0,
(new_size - orig_size) * sizeof(void *));
emutls_check_array_set_size(array, new_size);
}
return array;
}
void *__emutls_get_address(void *control)
{
uintptr_t index = emutls_get_index((__emutls_control *)control);
emutls_address_array *array = emutls_get_address_array(index);
if (array->data[index - 1] == NULL)
array->data[index - 1] = emutls_allocate_object((__emutls_control *)control);
return array->data[index - 1];
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View file

@ -0,0 +1,59 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#pragma once
#include <cstdlib>
#include <system_error>
#include <chrono>
#include <ratio>
#include <rtthread.h>
#define RT_USING_CPP_EXCEPTION
inline void throw_system_error(int err, const char *what_msg)
{
#ifdef RT_USING_CPP_EXCEPTION
throw std::system_error(std::error_code(err, std::system_category()), what_msg);
#else
(void)err;
(void)what_msg;
::abort();
#endif
}
class tick_clock
{
public:
typedef clock_t rep;
typedef std::ratio<1, RT_TICK_PER_SECOND> period;
typedef std::chrono::duration<tick_clock::rep, tick_clock::period> duration;
typedef std::chrono::time_point<tick_clock> time_point;
constexpr static bool is_ready = true;
static time_point now();
};
class real_time_clock
{
public:
typedef std::chrono::nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef std::chrono::time_point<real_time_clock, duration> time_point;
static constexpr bool is_steady = true;
static time_point
now() noexcept;
};

View file

@ -0,0 +1,222 @@
#pragma once
#if __cplusplus < 201103L
#error "C++ version lower than C++11"
#endif
#include <pthread.h>
#include <system_error>
#include <chrono>
#include <utility>
#include <functional>
#include <memory>
#include "__utils.h"
#include "mutex"
#define rt_cpp_cond_var pthread_cond_t
namespace std
{
enum class cv_status
{
no_timeout,
timeout
};
class condition_variable
{
public:
typedef rt_cpp_cond_var *native_handle_type;
condition_variable(const condition_variable &) = delete;
condition_variable &operator=(const condition_variable &) = delete;
condition_variable() = default;
~condition_variable()
{
pthread_cond_destroy(&_m_cond);
}
void wait(unique_lock<mutex> &lock);
void notify_one() noexcept
{
pthread_cond_signal(&_m_cond);
}
void notify_all() noexcept
{
pthread_cond_broadcast(&_m_cond);
}
template <class Predicate>
void wait(unique_lock<mutex> &lock, Predicate pred)
{
while (!pred())
wait(lock);
}
template <class Clock, class Duration>
cv_status wait_until(unique_lock<mutex> &lock,
const chrono::time_point<Clock, Duration> &abs_time)
{
if (!lock.owns_lock())
throw_system_error((int)errc::operation_not_permitted,
"condition_variable::wailt_until: waiting on unlocked lock");
auto secs = chrono::time_point_cast<chrono::seconds>(abs_time);
auto nano_secs = chrono::duration_cast<chrono::nanoseconds>(abs_time - secs);
struct timespec c_abs_time = {static_cast<time_t>(secs.time_since_epoch().count()),
static_cast<long>(nano_secs.count())};
pthread_cond_timedwait(&_m_cond, lock.mutex()->native_handle(), &c_abs_time);
return (Clock::now() < abs_time) ? cv_status::no_timeout : cv_status::timeout;
}
template <class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex> &lock,
const chrono::time_point<Clock, Duration> &abs_time,
Predicate pred)
{
while (!pred())
if (wait_until(lock, abs_time) == cv_status::timeout)
return pred();
return true;
}
template <class Rep, class Period>
cv_status wait_for(unique_lock<mutex> &lock,
const chrono::duration<Rep, Period> &rel_time)
{
return wait_until(lock, real_time_clock::now() + rel_time);
}
template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex> &lock,
const chrono::duration<Rep, Period> &rel_time,
Predicate pred)
{
return wait_until(lock, real_time_clock::now() + rel_time, std::move(pred));
}
native_handle_type native_handle()
{
return &_m_cond;
}
private:
rt_cpp_cond_var _m_cond = PTHREAD_COND_INITIALIZER;
};
// Lockable is only required to have `lock()` and `unlock()`
class condition_variable_any
{
private:
condition_variable _m_cond;
shared_ptr<mutex> _m_mtx;
// so that Lockable automatically unlocks when waiting and locks after waiting
template <class Lockable>
struct unlocker
{
Lockable &_m_lock;
explicit unlocker(Lockable &lk)
: _m_lock(lk)
{
_m_lock.unlock();
}
~unlocker()
{
_m_lock.lock();
}
unlocker(const unlocker &) = delete;
unlocker &operator=(const unlocker &) = delete;
};
public:
condition_variable_any() : _m_mtx(std::make_shared<mutex>()) {}
~condition_variable_any() = default;
condition_variable_any(const condition_variable_any &) = delete;
condition_variable_any &operator=(const condition_variable_any &) = delete;
void notify_one() noexcept
{
lock_guard<mutex> lk(*_m_mtx);
_m_cond.notify_one();
}
void notify_all() noexcept
{
lock_guard<mutex> lk(*_m_mtx);
_m_cond.notify_all();
}
template <class Lock>
void wait(Lock &lock)
{
shared_ptr<mutex> mut = _m_mtx;
unique_lock<mutex> lk(*mut);
unlocker<Lock> auto_lk(lock); // unlock here
unique_lock<mutex> lk2(std::move(lk));
_m_cond.wait(lk2);
} // mut.unlock(); lock.lock();
template <class Lock, class Predicate>
void wait(Lock &lock, Predicate pred)
{
while (!pred())
wait(lock);
}
template <class Lock, class Clock, class Duration>
cv_status wait_until(Lock &lock,
const chrono::time_point<Clock, Duration> &abs_time)
{
shared_ptr<mutex> mut = _m_mtx;
unique_lock<mutex> lk(*mut);
unlocker<Lock> auto_lk(lock); // unlock here
unique_lock<mutex> lk2(std::move(lk));
return _m_cond.wait_until(lk2, abs_time);
}
template <class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock &lock,
const chrono::time_point<Clock, Duration> &abs_time,
Predicate pred)
{
while (!pred())
if (wait_until(lock, abs_time) == cv_status::timeout)
return pred();
return true;
}
template <class Lock, class Rep, class Period>
cv_status wait_for(Lock &lock,
const chrono::duration<Rep, Period> &rel_time)
{
return wait_until(lock, real_time_clock::now() + rel_time);
}
template <class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock &lock,
const chrono::duration<Rep, Period> &rel_time,
Predicate pred)
{
return wait_until(lock, real_time_clock::now() + rel_time, std::move(pred));
}
};
void notify_all_at_thread_exit(condition_variable &cond, unique_lock<mutex> lk);
} // namespace std

View file

@ -0,0 +1,34 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include "condition_variable"
namespace std
{
void condition_variable::wait(unique_lock<mutex>& lock)
{
int err = pthread_cond_wait(&_m_cond, lock.mutex()->native_handle());
if (err)
{
throw_system_error(err, "condition_variable::wait: failed to wait on a condition");
}
}
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk)
{
// TLS currently not available
mutex* mut = lk.release();
mut->unlock();
cond.notify_all();
}
} // namespace std

View file

@ -0,0 +1,336 @@
#pragma once
#if __cplusplus < 201103L
#error "C++ version lower than C++11"
#endif
#include <mutex>
#include <condition_variable>
#include <memory>
#include <chrono>
#include <cassert>
namespace std {
enum class future_status {
ready,
timeout,
deferred
};
namespace detail {
class shared_state_base {
protected:
typedef void (*deleter_fn)(void *v);
using scoped_lock = std::lock_guard<std::mutex>;
using unique_lock = std::unique_lock<std::mutex>;
public:
explicit shared_state_base(deleter_fn d) : v_(nullptr), d_(d), valid_(true) {}
~shared_state_base() { d_(v_); }
shared_state_base(shared_state_base &&other) = delete;
shared_state_base(const shared_state_base &other) = delete;
shared_state_base &operator=(shared_state_base &&other) = delete;
shared_state_base &operator=(const shared_state_base &other) = delete;
void wait() {
unique_lock lock(m_);
c_.wait(lock, [this] { return has_value(); });
}
template <class Rep, class Period>
std::future_status
wait_for(const std::chrono::duration<Rep, Period> &rel_time) {
unique_lock lock(m_);
if (c_.wait_for(lock, rel_time, [this] { return has_value(); })) {
return std::future_status::ready;
}
return std::future_status::timeout;
}
template <class Clock, class Duration>
std::future_status
wait_until(const std::chrono::time_point<Clock, Duration> &abs_time) {
unique_lock lock(m_);
if (c_.wait_until(lock, abs_time, [this] { return has_value(); })) {
return std::future_status::ready;
}
return std::future_status::timeout;
}
protected:
bool has_value() { return v_ != nullptr; }
protected:
std::mutex m_;
std::condition_variable c_;
void *v_;
deleter_fn d_;
bool valid_;
};
template <typename R>
class shared_state: public shared_state_base {
public:
shared_state() :shared_state_base(default_deleter_) {}
~shared_state() {}
R &get() {
wait();
scoped_lock lock(m_);
assert(valid_);
valid_ = false;
return *(static_cast<R *>(v_));
}
void set(const R &v) {
scoped_lock lock(m_);
assert(!has_value());
v_ = new R(v);
valid_ = true;
c_.notify_one();
}
void set(R &&v) {
scoped_lock lock(m_);
assert(!has_value());
v_ = new R(std::move(v));
valid_ = true;
c_.notify_one();
}
bool valid() {
scoped_lock lock(m_);
return valid_;
}
private:
static void default_deleter_(void *v) { delete static_cast<R *>(v); }
};
} // namespace detail
template <typename R>
class shared_future {
};
template <typename R>
class future {
using state_type = std::shared_ptr<detail::shared_state<R>>;
public:
future() {}
explicit future(const state_type &state) : state_(state) {}
future(future &&other) noexcept: state_(std::move(other.state_)) {
other.state_.reset();
}
future(const future &other) = delete;
~future() {}
future &operator=(future &&other) noexcept {
if (&other != this) {
state_ = std::move(other.state_);
other.state_.reset();
}
return *this;
}
future &operator=(const future &other) = delete;
void swap(future &other) noexcept {
std::swap(state_, other.state_);
}
std::shared_future<R> share() noexcept { return std::shared_future<R>(); }
R get() { return state_->get(); }
bool valid() const noexcept { return state_->valid(); }
void wait() const { state_->wait(); }
template <class Rep, class Period>
std::future_status
wait_for(const std::chrono::duration<Rep, Period> &rel_time) const {
return state_->wait_for(rel_time);
}
template <class Clock, class Duration>
std::future_status
wait_until(const std::chrono::time_point<Clock, Duration> &abs_time) const {
return state_->wait_until(abs_time);
}
private:
state_type state_;
};
template <>
class future<void> {
using state_type = std::shared_ptr<detail::shared_state<int>>;
public:
future() {}
explicit future(const state_type &state) : state_(state) {}
future(future &&other) noexcept: state_(std::move(other.state_)) {
other.state_.reset();
}
future(const future &other) = delete;
~future() {}
future &operator=(future &&other) noexcept {
if (&other != this) {
state_ = std::move(other.state_);
other.state_.reset();
}
return *this;
}
future &operator=(const future &other) = delete;
void swap(future &other) noexcept {
std::swap(state_, other.state_);
}
std::shared_future<void> share() noexcept { return std::shared_future<void>(); }
void get() { state_->get(); }
bool valid() const noexcept { return state_->valid(); }
void wait() const { state_->wait(); }
template <class Rep, class Period>
std::future_status
wait_for(const std::chrono::duration<Rep, Period> &rel_time) const {
return state_->wait_for(rel_time);
}
template <class Clock, class Duration>
std::future_status
wait_until(const std::chrono::time_point<Clock, Duration> &abs_time) const {
return state_->wait_until(abs_time);
}
private:
state_type state_;
};
template <typename R>
class promise {
using state_type = std::shared_ptr<detail::shared_state<R>>;
public:
promise() : state_(new detail::shared_state<R>()) {}
promise(promise &&other) noexcept: state_(std::move(other.state_)) {
other.state_.reset();
}
promise(const promise &other) = delete;
~promise() {}
promise &operator=(promise &&other) noexcept {
if (&other != this) {
state_ = std::move(other.state_);
other.state_.reset();
}
return *this;
}
promise &operator=(const promise &other) = delete;
void swap(promise &other) noexcept {
std::swap(state_, other.state_);
}
std::future<R> get_future() { return std::future<R>(state_); }
void set_value(const R &value) { state_->set(value); }
void set_value(R &&value) { state_->set(std::move(value)); }
void set_value_at_thread_exit(const R &value);
void set_value_at_thread_exit(R &&value);
void set_exception(std::exception_ptr p);
void set_exception_at_thread_exit(std::exception_ptr p);
private:
state_type state_;
};
template <>
class promise<void> {
using state_type = std::shared_ptr<detail::shared_state<int>>;
public:
promise() : state_(new detail::shared_state<int>()) {}
promise(promise &&other) noexcept: state_(std::move(other.state_)) {
other.state_.reset();
}
promise(const promise &other) = delete;
~promise() {}
promise &operator=(promise &&other) noexcept {
if (&other != this) {
state_ = std::move(other.state_);
other.state_.reset();
}
return *this;
}
promise &operator=(const promise &other) = delete;
void swap(promise &other) noexcept {
std::swap(state_, other.state_);
}
std::future<void> get_future() { return std::future<void>(state_); }
void set_value() { state_->set(0); }
void set_value_at_thread_exit();
void set_exception(std::exception_ptr p);
void set_exception_at_thread_exit(std::exception_ptr p);
private:
state_type state_;
};
template <class R>
void swap(std::future<R> &lhs, std::future<R> &rhs) noexcept {
lhs.swap(rhs);
}
template <class R>
void swap(std::promise<R> &lhs, std::promise<R> &rhs) noexcept {
lhs.swap(rhs);
}
} // namespace std

View file

@ -0,0 +1,512 @@
#pragma once
#if __cplusplus < 201103L
#error "C++ version lower than C++11"
#endif
//#if defined(RT_USING_PTHREADS)
#include <pthread.h>
#include <system_error>
#include <chrono>
#include <utility>
#include <functional>
#include "__utils.h"
#define rt_cpp_mutex_t pthread_mutex_t
namespace std
{
// Base class on which to build std::mutex and std::timed_mutex
class __mutex_base
{
protected:
typedef rt_cpp_mutex_t __native_type;
__native_type _m_mutex = PTHREAD_MUTEX_INITIALIZER;
constexpr __mutex_base() noexcept = default;
__mutex_base(const __mutex_base&) = delete;
__mutex_base& operator=(const __mutex_base&) = delete;
};
class mutex : private __mutex_base
{
public:
constexpr mutex() = default;
~mutex() = default;
mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;
void lock()
{
int err = pthread_mutex_lock(&_m_mutex);
if (err)
{
throw_system_error(err, "mutex:lock failed.");
}
}
bool try_lock() noexcept
{
return !pthread_mutex_trylock(&_m_mutex);
}
void unlock() noexcept
{
pthread_mutex_unlock(&_m_mutex);
}
typedef __native_type* native_handle_type;
native_handle_type native_handle()
{
return &_m_mutex;
};
};
inline int __rt_cpp_recursive_mutex_init(rt_cpp_mutex_t* m)
{
pthread_mutexattr_t attr;
int res;
res = pthread_mutexattr_init(&attr);
if (res)
return res;
res = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
if (res)
goto attr_cleanup;
res = pthread_mutex_init(m, &attr);
attr_cleanup:
int err = pthread_mutexattr_destroy(&attr);
return res ? res : err;
}
class __recursive_mutex_base
{
protected:
typedef rt_cpp_mutex_t __native_type;
__native_type _m_recursive_mutex;
__recursive_mutex_base(const __recursive_mutex_base&) = delete;
__recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;
__recursive_mutex_base()
{
int err = __rt_cpp_recursive_mutex_init(&_m_recursive_mutex);
if (err)
throw_system_error(err, "Recursive mutex failed to construct");
}
~__recursive_mutex_base()
{
pthread_mutex_destroy(&_m_recursive_mutex);
}
};
class recursive_mutex : private __recursive_mutex_base
{
public:
typedef __native_type* native_handle_type;
recursive_mutex() = default;
~recursive_mutex() = default;
recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;
void lock()
{
int err = pthread_mutex_lock(&_m_recursive_mutex);
if (err)
throw_system_error(err, "recursive_mutex::lock failed");
}
bool try_lock() noexcept
{
return !pthread_mutex_trylock(&_m_recursive_mutex);
}
void unlock() noexcept
{
pthread_mutex_unlock(&_m_recursive_mutex);
}
native_handle_type native_handle()
{ return &_m_recursive_mutex; }
};
#ifdef RT_PTHREAD_TIMED_MUTEX
class timed_mutex;
class recursive_timed_mutex;
#endif // RT_PTHREAD_TIMED_MUTEX
struct defer_lock_t {};
struct try_to_lock_t {};
struct adopt_lock_t {}; // take ownership of a locked mtuex
constexpr defer_lock_t defer_lock { };
constexpr try_to_lock_t try_to_lock { };
constexpr adopt_lock_t adopt_lock { };
template <class Mutex>
class lock_guard
{
public:
typedef Mutex mutex_type;
explicit lock_guard(mutex_type& m) : pm(m) { pm.lock(); }
lock_guard(mutex_type& m, adopt_lock_t) noexcept : pm(m)
{ }
~lock_guard()
{ pm.unlock(); }
lock_guard(lock_guard const&) = delete;
lock_guard& operator=(lock_guard const&) = delete;
private:
mutex_type& pm;
};
template <class Mutex>
class unique_lock
{
public:
typedef Mutex mutex_type;
unique_lock() noexcept : pm(nullptr), owns(false) { }
explicit unique_lock(mutex_type& m)
: pm(std::addressof(m)), owns(false)
{
lock();
owns = true;
}
unique_lock(mutex_type& m, defer_lock_t) noexcept
: pm(std::addressof(m)), owns(false)
{ }
unique_lock(mutex_type& m, try_to_lock_t) noexcept
: pm(std::addressof(m)), owns(pm->try_lock())
{ }
unique_lock(mutex_type& m, adopt_lock_t) noexcept
: pm(std::addressof(m)), owns(true)
{ }
// any lock-involving timed mutex API is currently only for custom implementations
// the standard ones are not available
template <class Clock, class Duration>
unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time) noexcept
: pm(std::addressof(m)), owns(pm->try_lock_until(abs_time))
{ }
template <class Rep, class Period>
unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time) noexcept
: pm(std::addressof(m)), owns(pm->try_lock_for(rel_time))
{ }
~unique_lock()
{
if (owns)
unlock();
}
unique_lock(unique_lock const&) = delete;
unique_lock& operator=(unique_lock const&) = delete;
unique_lock(unique_lock&& u) noexcept
: pm(u.pm), owns(u.owns)
{
u.pm = nullptr;
u.owns = false;
}
unique_lock& operator=(unique_lock&& u) noexcept
{
if (owns)
unlock();
unique_lock(std::move(u)).swap(*this);
u.pm = nullptr;
u.owns = false;
return *this;
}
void lock()
{
if (!pm)
throw_system_error(int(errc::operation_not_permitted),
"unique_lock::lock: references null mutex");
else if (owns)
throw_system_error(int(errc::resource_deadlock_would_occur),
"unique_lock::lock: already locked" );
else {
pm->lock();
owns = true;
}
}
bool try_lock()
{
if (!pm)
throw_system_error(int(errc::operation_not_permitted),
"unique_lock::try_lock: references null mutex");
else if (owns)
throw_system_error(int(errc::resource_deadlock_would_occur),
"unique_lock::try_lock: already locked" );
else {
owns = pm->try_lock();
}
return owns;
}
template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time)
{
if (!pm)
throw_system_error(int(errc::operation_not_permitted),
"unique_lock::try_lock_for: references null mutex");
else if (owns)
throw_system_error(int(errc::resource_deadlock_would_occur),
"unique_lock::try_lock_for: already locked");
else {
owns = pm->try_lock_for(rel_time);
}
return owns;
}
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time)
{
if (!pm)
throw_system_error(int(errc::operation_not_permitted),
"unique_lock::try_lock_until: references null mutex");
else if (owns)
throw_system_error(int(errc::resource_deadlock_would_occur),
"unique_lock::try_lock_until: already locked");
else {
owns = pm->try_lock_until(abs_time);
}
return owns;
}
void unlock()
{
if (!owns)
throw_system_error(int(errc::operation_not_permitted),
"unique_lock::unlock: not locked");
else {
pm->unlock();
owns = false;
}
}
void swap(unique_lock& u) noexcept
{
std::swap(pm, u.pm);
std::swap(owns, u.owns);
}
mutex_type *release() noexcept
{
mutex_type* ret_mutex = pm;
pm = nullptr;
owns = false;
return ret_mutex;
}
bool owns_lock() const noexcept
{ return owns; }
explicit operator bool() const noexcept
{ return owns_lock(); }
mutex_type* mutex() const noexcept
{ return pm; }
private:
mutex_type *pm;
bool owns;
};
template <class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y)
{
x.swap(y);
}
template <class L0, class L1>
int try_lock(L0& l0, L1& l1)
{
unique_lock<L0> u0(l0, try_to_lock); // try to lock the first Lockable
// using unique_lock since we don't want to unlock l0 manually if l1 fails to lock
if (u0.owns_lock())
{
if (l1.try_lock()) // lock the second one
{
u0.release(); // do not let RAII of a unique_lock unlock l0
return -1;
}
else
return 1;
}
return 0;
}
template <class L0, class L1, class L2, class... L3>
int try_lock(L0& l0, L1& l1, L2& l2, L3&... l3)
{
int r = 0;
unique_lock<L0> u0(l0, try_to_lock);
// automatically unlock is done through RAII of unique_lock
if (u0.owns_lock())
{
r = try_lock(l1, l2, l3...);
if (r == -1)
u0.release();
else
++r;
}
return r;
}
template <class L0, class L1, class L2, class ...L3>
void
__lock_first(int i, L0& l0, L1& l1, L2& l2, L3&... l3)
{
while (true)
{
// we first lock the one that is the most difficult to lock
switch (i)
{
case 0:
{
unique_lock<L0> u0(l0);
i = try_lock(l1, l2, l3...);
if (i == -1)
{
u0.release();
return;
}
}
++i;
sched_yield();
break;
case 1:
{
unique_lock<L1> u1(l1);
i = try_lock(l2, l3..., l0);
if (i == -1)
{
u1.release();
return;
}
}
if (i == sizeof...(L3) + 1) // all except l0 are locked
i = 0;
else
i += 2; // since i was two-based above
sched_yield();
break;
default:
__lock_first(i - 2, l2, l3..., l0, l1);
return;
}
}
}
template <class L0, class L1>
void lock(L0& l0, L1& l1)
{
while (true)
{
{
unique_lock<L0> u0(l0);
if (l1.try_lock())
{
u0.release();
break;
}
}
sched_yield();
// wait and try the other way
{
unique_lock<L1> u1(l1);
if (l0.try_lock())
{
u1.release();
break;
}
}
sched_yield();
}
}
template <class L0, class L1, class... L2>
void lock(L0& l0, L1& l1, L2&... l2)
{
__lock_first(0, l0, l1, l2...);
}
struct once_flag
{
constexpr once_flag() noexcept = default;
once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;
template <class Callable, class... Args>
friend void call_once(once_flag& flag, Callable&& func, Args&&... args);
private:
pthread_once_t _m_once = PTHREAD_ONCE_INIT;
};
mutex& get_once_mutex();
extern function<void()> once_functor;
extern void set_once_functor_lock_ptr(unique_lock<mutex>*);
extern "C" void once_proxy(); // passed into pthread_once
template <class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args)
{
// use a lock to ensure the call to the functor
// is exclusive to only the first calling thread
unique_lock<mutex> functor_lock(get_once_mutex());
auto call_wrapper = std::bind(std::forward<Callable>(func), std::forward<Args>(args)...);
once_functor = [&]() { call_wrapper(); };
set_once_functor_lock_ptr(&functor_lock); // so as to unlock when actually calling
int err = pthread_once(&flag._m_once, &once_proxy);
if (functor_lock)
set_once_functor_lock_ptr(nullptr);
if (err)
throw_system_error(err, "call_once failed");
}
}
//#endif //(RT_USING_PTHREADS)

View file

@ -0,0 +1,52 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include "mutex"
namespace std
{
// use a set of global and static objects
// a proxy function to pthread_once
function<void()> once_functor;
mutex& get_once_mutex()
{
static mutex once_mutex;
return once_mutex;
}
inline unique_lock<mutex>*& get_once_functor_lock_ptr()
{
static unique_lock<mutex>* once_functor_mutex_ptr = nullptr;
return once_functor_mutex_ptr;
}
void set_once_functor_lock_ptr(unique_lock<mutex>* m_ptr)
{
get_once_functor_lock_ptr() = m_ptr;
}
extern "C"
{
void once_proxy()
{
// need to first transfer the functor's ownership so as to call it
function<void()> once_call = std::move(once_functor);
// no need to hold the lock anymore
unique_lock<mutex>* lock_ptr = get_once_functor_lock_ptr();
get_once_functor_lock_ptr() = nullptr;
lock_ptr->unlock();
once_call();
}
}
}

View file

@ -0,0 +1,239 @@
#pragma once
#if __cplusplus < 201103L
#error "C++ version lower than C++11"
#endif
//#if defined(RT_USING_PTHREADS)
#include <unistd.h>
#include <pthread.h>
#include <sched.h>
#include <rtthread.h>
#include <cstddef>
#include <cerrno>
#include <ostream>
#include <functional>
#include <utility>
#include <chrono>
#include <memory>
#define rt_cpp_thread_t pthread_t
#ifndef PTHREAD_NUM_MAX
#define PTHREAD_NUM_MAX 32
#endif
#define CPP_UNJOINABLE_THREAD PTHREAD_NUM_MAX
namespace std
{
#define __STDCPP_THREADS__ __cplusplus
class thread
{
public:
typedef rt_cpp_thread_t native_handle_type;
struct invoker_base;
typedef shared_ptr<invoker_base> invoker_base_ptr;
class id
{
// basically a wrapper around native_handle_type
native_handle_type __cpp_thread_t;
public:
id() noexcept : __cpp_thread_t(CPP_UNJOINABLE_THREAD) {}
explicit id(native_handle_type hid)
: __cpp_thread_t(hid) {}
private:
friend class thread;
friend class hash<thread::id>;
friend bool operator==(thread::id x, thread::id y) noexcept;
friend bool operator<(thread::id x, thread::id y) noexcept;
template <class charT, class traits>
friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& out, thread::id id);
};
thread() noexcept = default;
thread(const thread&) = delete;
thread& operator=(const thread&) = delete;
~thread();
template <class F, class ...Args>
explicit thread(F&& f, Args&&... args)
{
start_thread(make_invoker_ptr(std::bind(
std::forward<F>(f),
std::forward<Args>(args)...
)));
}
thread(thread&& t) noexcept
{
swap(t);
}
thread& operator=(thread&& t) noexcept
{
if (joinable())
terminate();
swap(t);
return *this;
}
// member functions
void swap(thread& t) noexcept
{
std::swap(_m_thr, t._m_thr);
}
bool joinable() const noexcept
{
return (_m_thr.__cpp_thread_t < PTHREAD_NUM_MAX);
}
void join();
void detach();
id get_id() const noexcept { return _m_thr; }
native_handle_type native_handle() { return _m_thr.__cpp_thread_t; }
// static members
static unsigned hardware_concurrency() noexcept;
private:
id _m_thr;
void start_thread(invoker_base_ptr b);
public:
struct invoker_base
{
invoker_base_ptr this_ptr;
virtual ~invoker_base() = default;
virtual void invoke() = 0;
};
template<typename Callable>
struct invoker : public invoker_base
{
Callable func;
invoker(Callable&& F) : func(std::forward<Callable>(F)) { }
void invoke() { func(); }
};
template <typename Callable>
shared_ptr<invoker<Callable>> make_invoker_ptr(Callable&& F)
{
return std::make_shared<invoker<Callable>>(std::forward<Callable>(F));
}
};
inline void swap(thread& x, thread& y) noexcept
{
x.swap(y);
}
inline bool operator==(thread::id x, thread::id y) noexcept
{
// From POSIX for pthread_equal:
//"If either t1 or t2 are not valid thread IDs, the behavior is undefined."
return x.__cpp_thread_t == y.__cpp_thread_t;
}
inline bool operator!=(thread::id x, thread::id y) noexcept
{
return !(x == y);
}
inline bool operator<(thread::id x, thread::id y) noexcept
{
return x.__cpp_thread_t < y.__cpp_thread_t;
}
inline bool operator<=(thread::id x, thread::id y) noexcept
{
return !(y < x);
}
inline bool operator>(thread::id x, thread::id y) noexcept
{
return !(x <= y);
}
inline bool operator>=(thread::id x, thread::id y) noexcept
{
return !(x < y);
}
template <class charT, class traits>
inline basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& out, thread::id id)
{
if (id == thread::id()) // id is invalid, representing no pthread
out << "thread::id of a non-executing thread";
else
out << id.__cpp_thread_t;
return out;
}
template <>
struct hash<thread::id>
{
typedef size_t result_type;
typedef thread::id argument_type;
size_t operator()(const thread::id& id) const noexcept
{
return hash<rt_cpp_thread_t>()(id.__cpp_thread_t);
}
};
namespace this_thread
{
inline thread::id get_id() noexcept
{
return thread::id(pthread_self());
}
inline void yield() noexcept
{
sched_yield();
}
template <class Rep, class Period>
inline void sleep_for(const chrono::duration<Rep, Period>& rel_time)
{
if (rel_time <= rel_time.zero()) // less than zero, no need to sleep
return;
auto milli_secs = chrono::duration_cast<chrono::milliseconds>(rel_time);
// the precision is limited by rt-thread thread API
rt_thread_mdelay(milli_secs.count());
}
template <class Clock, class Duration>
inline void sleep_until(const chrono::time_point<Clock, Duration>& abs_time)
{
auto now = Clock::now();
if (abs_time > now)
sleep_for(abs_time - now);
}
}
}

View file

@ -0,0 +1,94 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include "thread"
#include "__utils.h"
#define _RT_NPROCS 0
namespace std
{
extern "C"
{
static void* execute_native_thread_routine(void *p)
{
thread::invoker_base* t = static_cast<thread::invoker_base*>(p);
thread::invoker_base_ptr local;
local.swap(t->this_ptr); // tranfer the ownership of the invoker into the thread entry
local->invoke();
return NULL;
}
}
void thread::start_thread(invoker_base_ptr b)
{
auto raw_ptr = b.get();
// transfer the ownership of the invoker to the new thread
raw_ptr->this_ptr = std::move(b);
int err = pthread_create(&_m_thr.__cpp_thread_t, NULL,
&execute_native_thread_routine, raw_ptr);
if (err)
{
raw_ptr->this_ptr.reset();
throw_system_error(err, "Failed to create a thread");
}
}
thread::~thread()
{
if (joinable()) // when either not joined or not detached
terminate();
}
void thread::join()
{
int err = EINVAL;
if (joinable())
err = pthread_join(native_handle(), NULL);
if (err)
{
throw_system_error(err, "thread::join failed");
}
_m_thr = id();
}
void thread::detach()
{
int err = EINVAL;
if (joinable())
err = pthread_detach(native_handle());
if (err)
{
throw_system_error(err, "thread::detach failed");
}
_m_thr = id();
}
// TODO: not yet actually implemented.
// The standard states that the returned value should only be considered a hint.
unsigned thread::hardware_concurrency() noexcept
{
int __n = _RT_NPROCS;
if (__n < 0)
__n = 0;
return __n;
}
}

View file

@ -0,0 +1,29 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include "__utils.h"
#include <sys/time.h>
tick_clock::time_point tick_clock::now()
{
tick_clock::rep cur_tk = clock();
tick_clock::duration cur_time(cur_tk);
return tick_clock::time_point(cur_time);
}
real_time_clock::time_point real_time_clock::now() noexcept
{
timespec tp;
clock_gettime(CLOCK_REALTIME, &tp);
return time_point(duration(std::chrono::seconds(tp.tv_sec))
+ std::chrono::nanoseconds(tp.tv_nsec));
}

View file

@ -0,0 +1,34 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-04-27 flybreak the first version.
*/
#include <pthread.h>
#include <cstdlib>
typedef void (*destructor) (void *);
extern "C"
int __cxa_thread_atexit_impl(destructor dtor, void* obj, void* dso_symbol)
{
pthread_key_t key_tmp;
if (pthread_key_create(&key_tmp, dtor) != 0)
abort();
pthread_setspecific(key_tmp, obj);
return 0;
}
#if defined(__GNUC__) && !defined(__ARMCC_VERSION)/*GCC*/
#include <cxxabi.h>
extern"C"
int __cxxabiv1::__cxa_thread_atexit(destructor dtor, void *obj, void *dso_handle)
{
return __cxa_thread_atexit_impl(dtor, obj, dso_handle);
}
#endif

View file

@ -0,0 +1,44 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#include "cxx_mutex.h"
using namespace rtthread;
Mutex::Mutex(const char *name)
{
rt_mutex_init(&mID, name, RT_IPC_FLAG_PRIO);
}
bool Mutex::lock(int32_t millisec)
{
rt_int32_t tick;
if (millisec < 0)
tick = -1;
else
tick = rt_tick_from_millisecond(millisec);
return rt_mutex_take(&mID, tick) == RT_EOK;
}
bool Mutex::trylock()
{
return lock(0);
}
void Mutex::unlock()
{
rt_mutex_release(&mID);
}
Mutex::~Mutex()
{
rt_mutex_detach(&mID);
}

View file

@ -0,0 +1,39 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#include "cxx_semaphore.h"
using namespace rtthread;
Semaphore::Semaphore(const char *name, int32_t count)
{
rt_sem_init(&mID, name, count, RT_IPC_FLAG_FIFO);
}
bool Semaphore::wait(int32_t millisec)
{
rt_int32_t tick;
if (millisec < 0)
tick = -1;
else
tick = rt_tick_from_millisecond(millisec);
return rt_sem_take(&mID, tick) == RT_EOK;
}
void Semaphore::release(void)
{
rt_sem_release(&mID);
}
Semaphore::~Semaphore()
{
rt_sem_detach(&mID);
}

View file

@ -0,0 +1,117 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#include "cxx_thread.h"
using namespace rtthread;
Thread::Thread(rt_uint32_t stack_size,
rt_uint8_t priority,
rt_uint32_t tick,
const char *name)
: _entry(RT_NULL), _param(RT_NULL), started(false)
{
rt_event_init(&_event, name, 0);
_thread = rt_thread_create(name,
(thread_func_t)func,
this,
stack_size,
priority,
tick);
}
Thread::Thread(void (*entry)(void *p),
void *p,
rt_uint32_t stack_size,
rt_uint8_t priority,
rt_uint32_t tick,
const char *name)
: _entry(entry), _param(p), started(false)
{
rt_event_init(&_event, name, 0);
_thread = rt_thread_create(name,
(thread_func_t)func,
this,
stack_size,
priority,
tick);
}
Thread::~Thread()
{
rt_event_detach(&_event);
rt_thread_delete(_thread);
}
bool Thread::start()
{
if (rt_thread_startup(_thread) == RT_EOK)
{
started = true;
}
return started;
}
void Thread::sleep(int32_t millisec)
{
rt_int32_t tick;
if (millisec < 0)
tick = 1;
else
tick = rt_tick_from_millisecond(millisec);
rt_thread_delay(tick);
}
void Thread::func(Thread *pThis)
{
if (pThis->_entry != RT_NULL)
{
pThis->_entry(pThis->_param);
}
else
{
pThis->run(pThis->_param);
}
rt_event_send(&pThis->_event, 1);
}
void Thread::run(void *parameter)
{
/* please overload this method */
}
rt_err_t Thread::wait(int32_t millisec)
{
return join(millisec);
}
rt_err_t Thread::join(int32_t millisec)
{
if (started)
{
rt_int32_t tick;
if (millisec < 0)
tick = -1;
else
tick = rt_tick_from_millisecond(millisec);
return rt_event_recv(&_event, 1, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, tick, RT_NULL);
}
else
{
return -RT_ENOSYS;
}
}

View file

@ -0,0 +1,37 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2015-03-07 Bernard Add copyright header.
*/
#include <rtthread.h>
#include "cxx_crt.h"
void *operator new(size_t size)
{
return rt_malloc(size);
}
void *operator new[](size_t size)
{
return rt_malloc(size);
}
void operator delete(void *ptr)
{
rt_free(ptr);
}
void operator delete[](void *ptr)
{
return rt_free(ptr);
}
void __cxa_pure_virtual(void)
{
rt_kprintf("Illegal to call a pure virtual function.\n");
}

View file

@ -0,0 +1,26 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2015-03-07 Bernard Add copyright header.
*/
#ifndef CRT_H_
#define CRT_H_
#include <inttypes.h>
#include <stdlib.h>
void *operator new(size_t size);
void *operator new[](size_t size);
void operator delete(void * ptr);
void operator delete[](void *ptr);
extern "C" void __cxa_pure_virtual(void);
extern "C" int cplusplus_system_init(void);
#endif

View file

@ -0,0 +1,68 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2014-12-03 Bernard Add copyright header.
* 2014-12-29 Bernard Add cplusplus initialization for ARMCC.
* 2016-06-28 Bernard Add _init/_fini routines for GCC.
* 2016-10-02 Bernard Add WEAK for cplusplus_system_init routine.
*/
#include <rtthread.h>
#if defined(__ARMCC_VERSION)
extern void $Super$$__cpp_initialize__aeabi_(void);
/* we need to change the cpp_initialize order */
rt_weak void $Sub$$__cpp_initialize__aeabi_(void)
{
/* empty */
}
#elif defined(__GNUC__) && !defined(__CS_SOURCERYGXX_MAJ__)
/* The _init()/_fini() routines has been defined in codesourcery g++ lite */
rt_weak void _init()
{
}
rt_weak void _fini()
{
}
rt_weak void *__dso_handle = 0;
#endif
rt_weak int cplusplus_system_init(void)
{
#if defined(__ARMCC_VERSION)
/* If there is no SHT$$INIT_ARRAY, calling
* $Super$$__cpp_initialize__aeabi_() will cause fault. At least until Keil5.12
* the problem still exists. So we have to initialize the C++ runtime by ourself.
*/
typedef void PROC();
extern const unsigned long SHT$$INIT_ARRAY$$Base[];
extern const unsigned long SHT$$INIT_ARRAY$$Limit[];
const unsigned long *base = SHT$$INIT_ARRAY$$Base;
const unsigned long *lim = SHT$$INIT_ARRAY$$Limit;
for (; base != lim; base++)
{
PROC *proc = (PROC *)((const char *)base + *base);
(*proc)();
}
#elif defined(__GNUC__)
typedef void(*pfunc)();
extern pfunc __ctors_start__[];
extern pfunc __ctors_end__[];
pfunc *p;
for (p = __ctors_start__; p < __ctors_end__; p++)
(*p)();
#endif
return 0;
}
INIT_COMPONENT_EXPORT(cplusplus_system_init);

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2016/10/1 Bernard The first version
*/
#pragma once
#include <stdint.h>
#include <string.h>
namespace rtthread {
class Lock
{
public:
Lock(Mutex& mutex) : m(mutex) {m.lock();}
~Lock() {m.unlock();}
protected:
Mutex &m;
};
}

View file

@ -0,0 +1,81 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2016/10/1 Bernard The first version
*/
#pragma once
#include <stdint.h>
#include <string.h>
#include <rtthread.h>
namespace rtthread {
/**
* The Mail class allow to control, send, receive, or wait for mail.
* A mail is a memory block that is send to a thread or interrupt service routine.
* @param T data type of a single message element.
* @param queue_sz maximum number of messages in queue.
*/
template<typename T, uint32_t queue_sz>
class Mail {
public:
/** Create and Initialise Mail queue. */
Mail(const char *name = "")
{
rt_mb_init(&mID, name, mPool, queue_sz, RT_IPC_FLAG_FIFO);
}
~Mail()
{
rt_mb_detach(&mID);
}
/** Put a mail in the queue.
@param mptr memory block previously allocated with Mail::alloc or Mail::calloc.
@return status code that indicates the execution status of the function.
*/
bool put(T *mptr, int32_t millisec = 0)
{
rt_int32_t tick;
if (millisec < 0)
tick = -1;
else
tick = rt_tick_from_millisecond(millisec);
return rt_mb_send_wait(&mID, (rt_ubase_t)mptr, tick) == RT_EOK;
}
/** Get a mail from a queue.
@param millisec timeout value or 0 in case of no time-out. (default: osWaitForever).
@return event that contains mail information or error code.
*/
T* get(int32_t millisec = -1)
{
T *t = NULL;
rt_int32_t tick;
if (millisec < 0)
tick = -1;
else
tick = rt_tick_from_millisecond(millisec);
rt_mb_recv(&mID, &t, tick);
return t;
}
private:
struct rt_mailbox mID;
T* mPool[queue_sz];
};
}

View file

@ -0,0 +1,46 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2016/10/1 Bernard The first version
*/
#pragma once
#include <stdint.h>
#include <rtthread.h>
namespace rtthread {
/** The Mutex class is used to synchronise the execution of threads.
This is for example used to protect access to a shared resource.
*/
class Mutex {
public:
/** Create and Initialize a Mutex object */
Mutex(const char *name = "mutex");
~Mutex();
/** Wait until a Mutex becomes available.
@param millisec timeout value or 0 in case of no time-out. (default: WaitForever)
@return true if the mutex was acquired, false otherwise.
*/
bool lock(int32_t millisec = -1);
/** Try to lock the mutex, and return immediately
@return true if the mutex was acquired, false otherwise.
*/
bool trylock();
/** Unlock the mutex that has previously been locked by the same thread
*/
void unlock();
private:
struct rt_mutex mID;
};
}

View file

@ -0,0 +1,74 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2016/10/1 Bernard The first version
*/
#pragma once
#include <stdint.h>
#include <string.h>
#include <rtthread.h>
namespace rtthread {
/**
* The Queue class allow to control, send, receive, or wait for messages.
* A message can be a integer or pointer value to a certain type T that is send
* to a thread or interrupt service routine.
* @param T data type of a single message element.
* @param queue_sz maximum number of messages in queue.
*/
template<typename T, uint32_t queue_sz>
class Queue
{
public:
/** Create and initialise a message Queue. */
Queue()
{
rt_mq_init(&mID, "mq", mPool, sizeof(T), sizeof(mPool), RT_IPC_FLAG_FIFO);
};
~Queue()
{
rt_mq_detach(&mID);
};
/** Put a message in a Queue.
@param data message pointer.
@param millisec timeout value or 0 in case of no time-out. (default: 0)
@return status code that indicates the execution status of the function.
*/
rt_err_t put(T& data, int32_t millisec = 0)
{
return rt_mq_send(&mID, &data, sizeof(data));
}
/** Get a message or Wait for a message from a Queue.
@param millisec timeout value or 0 in case of no time-out. (default: osWaitForever).
@return bool .
*/
bool get(T& data, int32_t millisec = WAIT_FOREVER)
{
rt_int32_t tick;
if (millisec < 0)
tick = -1;
else
tick = rt_tick_from_millisecond(millisec);
return rt_mq_recv(&mID, &data, sizeof(data), tick) == RT_EOK;
}
private:
struct rt_messagequeue mID;
char mPool[(sizeof(void *) + RT_ALIGN(sizeof(T), RT_ALIGN_SIZE)) * queue_sz];
};
}

View file

@ -0,0 +1,42 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2016/10/1 Bernard The first version
*/
#pragma once
#include <stdint.h>
#include <rtthread.h>
namespace rtthread {
/** The Semaphore class is used to manage and protect access to a set of shared resources. */
class Semaphore
{
public:
/** Create and Initialize a Semaphore object used for managing resources.
@param number of available resources; maximum index value is (count-1).
*/
Semaphore(const char *name = "sem", int32_t count = 0);
~Semaphore();
/** Wait until a Semaphore resource becomes available.
@param millisec timeout value or 0 in case of no time-out.
@return true on success.
*/
bool wait(int32_t millisec = -1);
/** Release a Semaphore resource that was obtain with Semaphore::wait.
*/
void release(void);
private:
struct rt_semaphore mID;
};
}

View file

@ -0,0 +1,67 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2016/10/1 Bernard The first version
*/
#pragma once
#include <stdint.h>
#include <rtthread.h>
namespace rtthread
{
/** The Thread class allow defining, creating, and controlling thread functions in the system. */
class Thread
{
public:
typedef void (*thread_func_t)(void *param);
/** Allocate a new thread without starting execution
@param priority initial priority of the thread function. (default: osPriorityNormal).
@param stack_size stack size (in bytes) requirements for the thread function. (default: DEFAULT_STACK_SIZE).
@param stack_pointer pointer to the stack area to be used by this thread (default: NULL).
*/
Thread(rt_uint32_t stack_size = 2048,
rt_uint8_t priority = (RT_THREAD_PRIORITY_MAX * 2) / 3,
rt_uint32_t tick = 20,
const char *name = "th");
Thread(void (*entry)(void *p),
void *p = RT_NULL,
rt_uint32_t stack_size = 2048,
rt_uint8_t priority = (RT_THREAD_PRIORITY_MAX * 2) / 3,
rt_uint32_t tick = 20,
const char *name = "th");
virtual ~Thread();
bool start();
static void sleep(int32_t millisec);
rt_err_t wait(int32_t millisec);
rt_err_t join(int32_t millisec = -1);
protected:
virtual void run(void *parameter);
private:
static void func(Thread *pThis);
rt_thread_t _thread;
thread_func_t _entry;
void *_param;
/* event for thread join */
struct rt_event _event;
bool started;
};
}