import RT-Thread@9217865c without bsp, libcpu and components/net

This commit is contained in:
Zihao Yu 2023-05-20 16:23:33 +08:00
commit e2376a3709
1414 changed files with 390370 additions and 0 deletions

62
components/fal/src/fal.c Normal file
View file

@ -0,0 +1,62 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#include <fal.h>
static uint8_t init_ok = 0;
/**
* FAL (Flash Abstraction Layer) initialization.
* It will initialize all flash device and all flash partition.
*
* @return >= 0: partitions total number
*/
int fal_init(void)
{
extern int fal_flash_init(void);
extern int fal_partition_init(void);
int result;
/* initialize all flash device on FAL flash table */
result = fal_flash_init();
if (result < 0) {
goto __exit;
}
/* initialize all flash partition on FAL partition table */
result = fal_partition_init();
__exit:
if ((result > 0) && (!init_ok))
{
init_ok = 1;
log_i("RT-Thread Flash Abstraction Layer initialize success.");
}
else if(result <= 0)
{
init_ok = 0;
log_e("RT-Thread Flash Abstraction Layer initialize failed.");
}
return result;
}
/**
* Check if the FAL is initialized successfully
*
* @return 0: not init or init failed; 1: init success
*/
int fal_init_check(void)
{
return init_ok;
}

View file

@ -0,0 +1,79 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#include <fal.h>
#include <string.h>
/* flash device table, must defined by user */
#if !defined(FAL_FLASH_DEV_TABLE)
#error "You must defined flash device table (FAL_FLASH_DEV_TABLE) on 'fal_cfg.h'"
#endif
static const struct fal_flash_dev * const device_table[] = FAL_FLASH_DEV_TABLE;
static const size_t device_table_len = sizeof(device_table) / sizeof(device_table[0]);
static uint8_t init_ok = 0;
/**
* Initialize all flash device on FAL flash table
*
* @return result
*/
int fal_flash_init(void)
{
size_t i;
if (init_ok)
{
return 0;
}
for (i = 0; i < device_table_len; i++)
{
assert(device_table[i]->ops.read);
assert(device_table[i]->ops.write);
assert(device_table[i]->ops.erase);
/* init flash device on flash table */
if (device_table[i]->ops.init)
{
device_table[i]->ops.init();
}
log_d("Flash device | %*.*s | addr: 0x%08lx | len: 0x%08x | blk_size: 0x%08x |initialized finish.",
FAL_DEV_NAME_MAX, FAL_DEV_NAME_MAX, device_table[i]->name, device_table[i]->addr, device_table[i]->len,
device_table[i]->blk_size);
}
init_ok = 1;
return 0;
}
/**
* find flash device by name
*
* @param name flash device name
*
* @return != NULL: flash device
* NULL: not found
*/
const struct fal_flash_dev *fal_flash_device_find(const char *name)
{
assert(init_ok);
assert(name);
size_t i;
for (i = 0; i < device_table_len; i++)
{
if (!strncmp(name, device_table[i]->name, FAL_DEV_NAME_MAX)) {
return device_table[i];
}
}
return NULL;
}

View file

@ -0,0 +1,514 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-05-17 armink the first version
*/
#include <fal.h>
#include <string.h>
#include <stdlib.h>
/* partition magic word */
#define FAL_PART_MAGIC_WORD 0x45503130
#define FAL_PART_MAGIC_WORD_H 0x4550L
#define FAL_PART_MAGIC_WORD_L 0x3130L
#define FAL_PART_MAGIC_WROD 0x45503130
struct part_flash_info
{
const struct fal_flash_dev *flash_dev;
};
/**
* FAL partition table config has defined on 'fal_cfg.h'.
* When this option is disable, it will auto find the partition table on a specified location in flash partition.
*/
#ifdef FAL_PART_HAS_TABLE_CFG
/* check partition table definition */
#if !defined(FAL_PART_TABLE)
#error "You must defined FAL_PART_TABLE on 'fal_cfg.h'"
#endif
/* partition table definition */
static const struct fal_partition partition_table_def[] = FAL_PART_TABLE;
static const struct fal_partition *partition_table = NULL;
/* partition and flash object information cache table */
static struct part_flash_info part_flash_cache[sizeof(partition_table_def) / sizeof(partition_table_def[0])] = { 0 };
#else /* FAL_PART_HAS_TABLE_CFG */
#if !defined(FAL_PART_TABLE_FLASH_DEV_NAME)
#error "You must defined FAL_PART_TABLE_FLASH_DEV_NAME on 'fal_cfg.h'"
#endif
/* check partition table end offset address definition */
#if !defined(FAL_PART_TABLE_END_OFFSET)
#error "You must defined FAL_PART_TABLE_END_OFFSET on 'fal_cfg.h'"
#endif
static struct fal_partition *partition_table = NULL;
static struct part_flash_info *part_flash_cache = NULL;
#endif /* FAL_PART_HAS_TABLE_CFG */
static uint8_t init_ok = 0;
static size_t partition_table_len = 0;
/**
* print the partition table
*/
void fal_show_part_table(void)
{
char *item1 = "name", *item2 = "flash_dev";
size_t i, part_name_max = strlen(item1), flash_dev_name_max = strlen(item2);
const struct fal_partition *part;
if (partition_table_len)
{
for (i = 0; i < partition_table_len; i++)
{
part = &partition_table[i];
if (strlen(part->name) > part_name_max)
{
part_name_max = strlen(part->name);
}
if (strlen(part->flash_name) > flash_dev_name_max)
{
flash_dev_name_max = strlen(part->flash_name);
}
}
}
log_i("==================== FAL partition table ====================");
log_i("| %-*.*s | %-*.*s | offset | length |", part_name_max, FAL_DEV_NAME_MAX, item1, flash_dev_name_max,
FAL_DEV_NAME_MAX, item2);
log_i("-------------------------------------------------------------");
for (i = 0; i < partition_table_len; i++)
{
#ifdef FAL_PART_HAS_TABLE_CFG
part = &partition_table[i];
#else
part = &partition_table[partition_table_len - i - 1];
#endif
log_i("| %-*.*s | %-*.*s | 0x%08lx | 0x%08x |", part_name_max, FAL_DEV_NAME_MAX, part->name, flash_dev_name_max,
FAL_DEV_NAME_MAX, part->flash_name, part->offset, part->len);
}
log_i("=============================================================");
}
static int check_and_update_part_cache(const struct fal_partition *table, size_t len)
{
const struct fal_flash_dev *flash_dev = NULL;
size_t i;
#ifndef FAL_PART_HAS_TABLE_CFG
if (part_flash_cache)
{
FAL_FREE(part_flash_cache);
}
part_flash_cache = FAL_MALLOC(len * sizeof(struct part_flash_info));
if (part_flash_cache == NULL)
{
log_e("Initialize failed! No memory for partition table cache");
return -2;
}
#endif
for (i = 0; i < len; i++)
{
flash_dev = fal_flash_device_find(table[i].flash_name);
if (flash_dev == NULL)
{
log_d("Warning: Do NOT found the flash device(%s).", table[i].flash_name);
continue;
}
if (table[i].offset >= (long)flash_dev->len)
{
log_e("Initialize failed! Partition(%s) offset address(%ld) out of flash bound(<%d).",
table[i].name, table[i].offset, flash_dev->len);
partition_table_len = 0;
return -1;
}
part_flash_cache[i].flash_dev = flash_dev;
}
return 0;
}
/**
* Initialize all flash partition on FAL partition table
*
* @return partitions total number
*/
int fal_partition_init(void)
{
if (init_ok)
{
return partition_table_len;
}
#ifdef FAL_PART_HAS_TABLE_CFG
partition_table = &partition_table_def[0];
partition_table_len = sizeof(partition_table_def) / sizeof(partition_table_def[0]);
#else
/* load partition table from the end address FAL_PART_TABLE_END_OFFSET, error return 0 */
long part_table_offset = FAL_PART_TABLE_END_OFFSET;
size_t table_num = 0, table_item_size = 0;
uint8_t part_table_find_ok = 0;
uint32_t read_magic_word;
fal_partition_t new_part = NULL;
size_t i;
const struct fal_flash_dev *flash_dev = NULL;
flash_dev = fal_flash_device_find(FAL_PART_TABLE_FLASH_DEV_NAME);
if (flash_dev == NULL)
{
log_e("Initialize failed! Flash device (%s) NOT found.", FAL_PART_TABLE_FLASH_DEV_NAME);
goto _exit;
}
/* check partition table offset address */
if (part_table_offset < 0 || part_table_offset >= (long) flash_dev->len)
{
log_e("Setting partition table end offset address(%ld) out of flash bound(<%d).", part_table_offset, flash_dev->len);
goto _exit;
}
table_item_size = sizeof(struct fal_partition);
new_part = (fal_partition_t)FAL_MALLOC(table_item_size);
if (new_part == NULL)
{
log_e("Initialize failed! No memory for table buffer.");
goto _exit;
}
/* find partition table location */
{
uint8_t read_buf[64];
part_table_offset -= sizeof(read_buf);
while (part_table_offset >= 0)
{
if (flash_dev->ops.read(part_table_offset, read_buf, sizeof(read_buf)) > 0)
{
/* find magic word in read buf */
for (i = 0; i < sizeof(read_buf) - sizeof(read_magic_word) + 1; i++)
{
read_magic_word = read_buf[0 + i] + (read_buf[1 + i] << 8) + (read_buf[2 + i] << 16) + (read_buf[3 + i] << 24);
if (read_magic_word == ((FAL_PART_MAGIC_WORD_H << 16) + FAL_PART_MAGIC_WORD_L))
{
part_table_find_ok = 1;
part_table_offset += i;
log_d("Find the partition table on '%s' offset @0x%08lx.", FAL_PART_TABLE_FLASH_DEV_NAME,
part_table_offset);
break;
}
}
}
else
{
/* read failed */
break;
}
if (part_table_find_ok)
{
break;
}
else
{
/* calculate next read buf position */
if (part_table_offset >= (long)sizeof(read_buf))
{
part_table_offset -= sizeof(read_buf);
part_table_offset += (sizeof(read_magic_word) - 1);
}
else if (part_table_offset != 0)
{
part_table_offset = 0;
}
else
{
/* find failed */
break;
}
}
}
}
/* load partition table */
while (part_table_find_ok)
{
memset(new_part, 0x00, table_num);
if (flash_dev->ops.read(part_table_offset - table_item_size * (table_num), (uint8_t *) new_part,
table_item_size) < 0)
{
log_e("Initialize failed! Flash device (%s) read error!", flash_dev->name);
table_num = 0;
break;
}
if (new_part->magic_word != ((FAL_PART_MAGIC_WORD_H << 16) + FAL_PART_MAGIC_WORD_L))
{
break;
}
partition_table = (fal_partition_t) FAL_REALLOC(partition_table, table_item_size * (table_num + 1));
if (partition_table == NULL)
{
log_e("Initialize failed! No memory for partition table");
table_num = 0;
break;
}
memcpy(partition_table + table_num, new_part, table_item_size);
table_num++;
};
if (table_num == 0)
{
log_e("Partition table NOT found on flash: %s (len: %d) from offset: 0x%08x.", FAL_PART_TABLE_FLASH_DEV_NAME,
FAL_DEV_NAME_MAX, FAL_PART_TABLE_END_OFFSET);
goto _exit;
}
else
{
partition_table_len = table_num;
}
#endif /* FAL_PART_HAS_TABLE_CFG */
/* check the partition table device exists */
if (check_and_update_part_cache(partition_table, partition_table_len) != 0)
{
goto _exit;
}
init_ok = 1;
_exit:
#if FAL_DEBUG
fal_show_part_table();
#endif
#ifndef FAL_PART_HAS_TABLE_CFG
if (new_part)
{
FAL_FREE(new_part);
}
#endif /* !FAL_PART_HAS_TABLE_CFG */
return partition_table_len;
}
/**
* find the partition by name
*
* @param name partition name
*
* @return != NULL: partition
* NULL: not found
*/
const struct fal_partition *fal_partition_find(const char *name)
{
assert(init_ok);
size_t i;
for (i = 0; i < partition_table_len; i++)
{
if (!strcmp(name, partition_table[i].name))
{
return &partition_table[i];
}
}
return NULL;
}
static const struct fal_flash_dev *flash_device_find_by_part(const struct fal_partition *part)
{
assert(part >= partition_table);
assert(part <= &partition_table[partition_table_len - 1]);
return part_flash_cache[part - partition_table].flash_dev;
}
/**
* get the partition table
*
* @param len return the partition table length
*
* @return partition table
*/
const struct fal_partition *fal_get_partition_table(size_t *len)
{
assert(init_ok);
assert(len);
*len = partition_table_len;
return partition_table;
}
/**
* set partition table temporarily
* This setting will modify the partition table temporarily, the setting will be lost after restart.
*
* @param table partition table
* @param len partition table length
*/
void fal_set_partition_table_temp(struct fal_partition *table, size_t len)
{
assert(init_ok);
assert(table);
check_and_update_part_cache(table, len);
partition_table_len = len;
partition_table = table;
}
/**
* read data from partition
*
* @param part partition
* @param addr relative address for partition
* @param buf read buffer
* @param size read size
*
* @return >= 0: successful read data size
* -1: error
*/
int fal_partition_read(const struct fal_partition *part, uint32_t addr, uint8_t *buf, size_t size)
{
int ret = 0;
const struct fal_flash_dev *flash_dev = NULL;
assert(part);
assert(buf);
if (addr + size > part->len)
{
log_e("Partition read error! Partition address out of bound.");
return -1;
}
flash_dev = flash_device_find_by_part(part);
if (flash_dev == NULL)
{
log_e("Partition read error! Don't found flash device(%s) of the partition(%s).", part->flash_name, part->name);
return -1;
}
ret = flash_dev->ops.read(part->offset + addr, buf, size);
if (ret < 0)
{
log_e("Partition read error! Flash device(%s) read error!", part->flash_name);
}
return ret;
}
/**
* write data to partition
*
* @param part partition
* @param addr relative address for partition
* @param buf write buffer
* @param size write size
*
* @return >= 0: successful write data size
* -1: error
*/
int fal_partition_write(const struct fal_partition *part, uint32_t addr, const uint8_t *buf, size_t size)
{
int ret = 0;
const struct fal_flash_dev *flash_dev = NULL;
assert(part);
assert(buf);
if (addr + size > part->len)
{
log_e("Partition write error! Partition address out of bound.");
return -1;
}
flash_dev = flash_device_find_by_part(part);
if (flash_dev == NULL)
{
log_e("Partition write error! Don't found flash device(%s) of the partition(%s).", part->flash_name, part->name);
return -1;
}
ret = flash_dev->ops.write(part->offset + addr, buf, size);
if (ret < 0)
{
log_e("Partition write error! Flash device(%s) write error!", part->flash_name);
}
return ret;
}
/**
* erase partition data
*
* @param part partition
* @param addr relative address for partition
* @param size erase size
*
* @return >= 0: successful erased data size
* -1: error
*/
int fal_partition_erase(const struct fal_partition *part, uint32_t addr, size_t size)
{
int ret = 0;
const struct fal_flash_dev *flash_dev = NULL;
assert(part);
if (addr + size > part->len)
{
log_e("Partition erase error! Partition address out of bound.");
return -1;
}
flash_dev = flash_device_find_by_part(part);
if (flash_dev == NULL)
{
log_e("Partition erase error! Don't found flash device(%s) of the partition(%s).", part->flash_name, part->name);
return -1;
}
ret = flash_dev->ops.erase(part->offset + addr, size);
if (ret < 0)
{
log_e("Partition erase error! Flash device(%s) erase error!", part->flash_name);
}
return ret;
}
/**
* erase partition all data
*
* @param part partition
*
* @return >= 0: successful erased data size
* -1: error
*/
int fal_partition_erase_all(const struct fal_partition *part)
{
return fal_partition_erase(part, 0, part->len);
}

View file

@ -0,0 +1,939 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-06-23 armink the first version
* 2019-08-22 MurphyZhao adapt to none rt-thread case
*/
#include <fal.h>
#ifdef RT_VER_NUM
#include <rtthread.h>
#include <rtdevice.h>
#include <string.h>
#include <stdlib.h>
/* ========================== block device ======================== */
struct fal_blk_device
{
struct rt_device parent;
struct rt_device_blk_geometry geometry;
const struct fal_partition *fal_part;
};
/* RT-Thread device interface */
#if RTTHREAD_VERSION >= 30000
static rt_err_t blk_dev_control(rt_device_t dev, int cmd, void *args)
#else
static rt_err_t blk_dev_control(rt_device_t dev, rt_uint8_t cmd, void *args)
#endif
{
struct fal_blk_device *part = (struct fal_blk_device*) dev;
assert(part != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *) args;
if (geometry == RT_NULL)
{
return -RT_ERROR;
}
memcpy(geometry, &part->geometry, sizeof(struct rt_device_blk_geometry));
}
else if (cmd == RT_DEVICE_CTRL_BLK_ERASE)
{
rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
rt_size_t phy_size;
if (addrs == RT_NULL || start_addr > end_addr)
{
return -RT_ERROR;
}
if (end_addr == start_addr)
{
end_addr++;
}
phy_start_addr = start_addr * part->geometry.bytes_per_sector;
phy_size = (end_addr - start_addr) * part->geometry.bytes_per_sector;
if (fal_partition_erase(part->fal_part, phy_start_addr, phy_size) < 0)
{
return -RT_ERROR;
}
}
return RT_EOK;
}
static rt_ssize_t blk_dev_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
int ret = 0;
struct fal_blk_device *part = (struct fal_blk_device*) dev;
assert(part != RT_NULL);
ret = fal_partition_read(part->fal_part, pos * part->geometry.block_size, buffer, size * part->geometry.block_size);
if (ret != (int)(size * part->geometry.block_size))
{
ret = 0;
}
else
{
ret = size;
}
return ret;
}
static rt_ssize_t blk_dev_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
int ret = 0;
struct fal_blk_device *part;
rt_off_t phy_pos;
rt_size_t phy_size;
part = (struct fal_blk_device*) dev;
assert(part != RT_NULL);
/* change the block device's logic address to physical address */
phy_pos = pos * part->geometry.bytes_per_sector;
phy_size = size * part->geometry.bytes_per_sector;
ret = fal_partition_erase(part->fal_part, phy_pos, phy_size);
if (ret == (int) phy_size)
{
ret = fal_partition_write(part->fal_part, phy_pos, buffer, phy_size);
}
if (ret != (int) phy_size)
{
ret = 0;
}
else
{
ret = size;
}
return ret;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops blk_dev_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
blk_dev_read,
blk_dev_write,
blk_dev_control
};
#endif
/**
* create RT-Thread block device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created block device
* NULL: created failed
*/
struct rt_device *fal_blk_device_create(const char *parition_name)
{
struct fal_blk_device *blk_dev;
const struct fal_partition *fal_part = fal_partition_find(parition_name);
const struct fal_flash_dev *fal_flash = NULL;
if (!fal_part)
{
log_e("Error: the partition name (%s) is not found.", parition_name);
return NULL;
}
if ((fal_flash = fal_flash_device_find(fal_part->flash_name)) == NULL)
{
log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name);
return NULL;
}
blk_dev = (struct fal_blk_device*) rt_malloc(sizeof(struct fal_blk_device));
if (blk_dev)
{
blk_dev->fal_part = fal_part;
blk_dev->geometry.bytes_per_sector = fal_flash->blk_size;
blk_dev->geometry.block_size = fal_flash->blk_size;
blk_dev->geometry.sector_count = fal_part->len / fal_flash->blk_size;
/* register device */
blk_dev->parent.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
blk_dev->parent.ops = &blk_dev_ops;
#else
blk_dev->parent.init = NULL;
blk_dev->parent.open = NULL;
blk_dev->parent.close = NULL;
blk_dev->parent.read = blk_dev_read;
blk_dev->parent.write = blk_dev_write;
blk_dev->parent.control = blk_dev_control;
#endif
/* no private */
blk_dev->parent.user_data = RT_NULL;
log_i("The FAL block device (%s) created successfully", fal_part->name);
rt_device_register(RT_DEVICE(blk_dev), fal_part->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
}
else
{
log_e("Error: no memory for create FAL block device");
}
return RT_DEVICE(blk_dev);
}
/* ========================== MTD nor device ======================== */
#if defined(RT_USING_MTD_NOR)
struct fal_mtd_nor_device
{
struct rt_mtd_nor_device parent;
const struct fal_partition *fal_part;
};
static rt_ssize_t mtd_nor_dev_read(struct rt_mtd_nor_device* device, rt_off_t offset, rt_uint8_t* data, rt_uint32_t length)
{
int ret = 0;
struct fal_mtd_nor_device *part = (struct fal_mtd_nor_device*) device;
assert(part != RT_NULL);
ret = fal_partition_read(part->fal_part, offset, data, length);
if (ret != (int)length)
{
ret = 0;
}
else
{
ret = length;
}
return ret;
}
static rt_ssize_t mtd_nor_dev_write(struct rt_mtd_nor_device* device, rt_off_t offset, const rt_uint8_t* data, rt_uint32_t length)
{
int ret = 0;
struct fal_mtd_nor_device *part;
part = (struct fal_mtd_nor_device*) device;
assert(part != RT_NULL);
ret = fal_partition_write(part->fal_part, offset, data, length);
if (ret != (int) length)
{
ret = 0;
}
else
{
ret = length;
}
return ret;
}
static rt_err_t mtd_nor_dev_erase(struct rt_mtd_nor_device* device, rt_off_t offset, rt_uint32_t length)
{
int ret = 0;
struct fal_mtd_nor_device *part;
part = (struct fal_mtd_nor_device*) device;
assert(part != RT_NULL);
ret = fal_partition_erase(part->fal_part, offset, length);
if ((rt_uint32_t)ret != length || ret < 0)
{
return -RT_ERROR;
}
else
{
return RT_EOK;
}
}
static const struct rt_mtd_nor_driver_ops _ops =
{
RT_NULL,
mtd_nor_dev_read,
mtd_nor_dev_write,
mtd_nor_dev_erase,
};
/**
* create RT-Thread MTD NOR device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created MTD NOR device
* NULL: created failed
*/
struct rt_device *fal_mtd_nor_device_create(const char *parition_name)
{
struct fal_mtd_nor_device *mtd_nor_dev;
const struct fal_partition *fal_part = fal_partition_find(parition_name);
const struct fal_flash_dev *fal_flash = NULL;
if (!fal_part)
{
log_e("Error: the partition name (%s) is not found.", parition_name);
return NULL;
}
if ((fal_flash = fal_flash_device_find(fal_part->flash_name)) == NULL)
{
log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name);
return NULL;
}
mtd_nor_dev = (struct fal_mtd_nor_device*) rt_malloc(sizeof(struct fal_mtd_nor_device));
if (mtd_nor_dev)
{
mtd_nor_dev->fal_part = fal_part;
mtd_nor_dev->parent.block_start = 0;
mtd_nor_dev->parent.block_end = fal_part->len / fal_flash->blk_size;
mtd_nor_dev->parent.block_size = fal_flash->blk_size;
/* set ops */
mtd_nor_dev->parent.ops = &_ops;
log_i("The FAL MTD NOR device (%s) created successfully", fal_part->name);
rt_mtd_nor_register_device(fal_part->name, &mtd_nor_dev->parent);
}
else
{
log_e("Error: no memory for create FAL MTD NOR device");
}
return RT_DEVICE(&mtd_nor_dev->parent);
}
#endif /* defined(RT_USING_MTD_NOR) */
/* ========================== char device ======================== */
struct fal_char_device
{
struct rt_device parent;
const struct fal_partition *fal_part;
};
/* RT-Thread device interface */
static rt_ssize_t char_dev_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
int ret = 0;
struct fal_char_device *part = (struct fal_char_device *) dev;
assert(part != RT_NULL);
if (pos + size > part->fal_part->len)
size = part->fal_part->len - pos;
ret = fal_partition_read(part->fal_part, pos, buffer, size);
if (ret != (int)(size))
ret = 0;
return ret;
}
static rt_ssize_t char_dev_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
int ret = 0;
struct fal_char_device *part;
part = (struct fal_char_device *) dev;
assert(part != RT_NULL);
if (pos == 0)
{
fal_partition_erase_all(part->fal_part);
}
else if (pos + size > part->fal_part->len)
{
size = part->fal_part->len - pos;
}
ret = fal_partition_write(part->fal_part, pos, buffer, size);
if (ret != (int) size)
ret = 0;
return ret;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops char_dev_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
char_dev_read,
char_dev_write,
RT_NULL
};
#endif
#ifdef RT_USING_POSIX_DEVIO
#include <dfs_file.h>
#include <unistd.h>
#include <stdio.h> /* rename() */
#include <sys/stat.h>
#include <sys/statfs.h> /* statfs() */
/* RT-Thread device filesystem interface */
static int char_dev_fopen(struct dfs_file *fd)
{
struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data;
assert(part != RT_NULL);
switch (fd->flags & O_ACCMODE)
{
case O_RDONLY:
break;
case O_WRONLY:
case O_RDWR:
/* erase partition when device file open */
fal_partition_erase_all(part->fal_part);
break;
default:
break;
}
fd->pos = 0;
return RT_EOK;
}
static int char_dev_fread(struct dfs_file *fd, void *buf, size_t count)
{
int ret = 0;
struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data;
assert(part != RT_NULL);
if (fd->pos + count > part->fal_part->len)
count = part->fal_part->len - fd->pos;
ret = fal_partition_read(part->fal_part, fd->pos, buf, count);
if (ret != (int)(count))
return 0;
fd->pos += ret;
return ret;
}
static int char_dev_fwrite(struct dfs_file *fd, const void *buf, size_t count)
{
int ret = 0;
struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data;
assert(part != RT_NULL);
if (fd->pos + count > part->fal_part->len)
count = part->fal_part->len - fd->pos;
ret = fal_partition_write(part->fal_part, fd->pos, buf, count);
if (ret != (int) count)
return 0;
fd->pos += ret;
return ret;
}
static const struct dfs_file_ops char_dev_fops =
{
char_dev_fopen,
RT_NULL,
RT_NULL,
char_dev_fread,
char_dev_fwrite,
RT_NULL, /* flush */
RT_NULL, /* lseek */
RT_NULL, /* getdents */
RT_NULL,
};
#endif /* defined(RT_USING_POSIX_DEVIO) */
/**
* create RT-Thread char device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created char device
* NULL: created failed
*/
struct rt_device *fal_char_device_create(const char *parition_name)
{
struct fal_char_device *char_dev;
const struct fal_partition *fal_part = fal_partition_find(parition_name);
if (!fal_part)
{
log_e("Error: the partition name (%s) is not found.", parition_name);
return NULL;
}
if ((fal_flash_device_find(fal_part->flash_name)) == NULL)
{
log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name);
return NULL;
}
char_dev = (struct fal_char_device *) rt_malloc(sizeof(struct fal_char_device));
if (char_dev)
{
char_dev->fal_part = fal_part;
/* register device */
char_dev->parent.type = RT_Device_Class_Char;
#ifdef RT_USING_DEVICE_OPS
char_dev->parent.ops = &char_dev_ops;
#else
char_dev->parent.init = NULL;
char_dev->parent.open = NULL;
char_dev->parent.close = NULL;
char_dev->parent.read = char_dev_read;
char_dev->parent.write = char_dev_write;
char_dev->parent.control = NULL;
/* no private */
char_dev->parent.user_data = NULL;
#endif
rt_device_register(RT_DEVICE(char_dev), fal_part->name, RT_DEVICE_FLAG_RDWR);
log_i("The FAL char device (%s) created successfully", fal_part->name);
#ifdef RT_USING_POSIX_DEVIO
/* set fops */
char_dev->parent.fops = &char_dev_fops;
#endif
}
else
{
log_e("Error: no memory for create FAL char device");
}
return RT_DEVICE(char_dev);
}
#if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
#include <finsh.h>
extern int fal_init_check(void);
static void fal(uint8_t argc, char **argv) {
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
#define HEXDUMP_WIDTH 16
#define CMD_PROBE_INDEX 0
#define CMD_READ_INDEX 1
#define CMD_WRITE_INDEX 2
#define CMD_ERASE_INDEX 3
#define CMD_BENCH_INDEX 4
int result = 0;
static const struct fal_flash_dev *flash_dev = NULL;
static const struct fal_partition *part_dev = NULL;
size_t i = 0, j = 0;
const char* help_info[] =
{
[CMD_PROBE_INDEX] = "fal probe [dev_name|part_name] - probe flash device or partition by given name",
[CMD_READ_INDEX] = "fal read addr size - read 'size' bytes starting at 'addr'",
[CMD_WRITE_INDEX] = "fal write addr data1 ... dataN - write some bytes 'data' starting at 'addr'",
[CMD_ERASE_INDEX] = "fal erase addr size - erase 'size' bytes starting at 'addr'",
[CMD_BENCH_INDEX] = "fal bench <blk_size> - benchmark test with per block size",
};
if (fal_init_check() != 1)
{
rt_kprintf("\n[Warning] FAL is not initialized or failed to initialize!\n\n");
return;
}
if (argc < 2)
{
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(help_info) / sizeof(char*); i++)
{
rt_kprintf("%s\n", help_info[i]);
}
rt_kprintf("\n");
}
else
{
const char *operator = argv[1];
uint32_t addr, size;
if (!strcmp(operator, "probe"))
{
if (argc >= 3)
{
char *dev_name = argv[2];
if ((flash_dev = fal_flash_device_find(dev_name)) != NULL)
{
part_dev = NULL;
}
else if ((part_dev = fal_partition_find(dev_name)) != NULL)
{
flash_dev = NULL;
}
else
{
rt_kprintf("Device %s NOT found. Probe failed.\n", dev_name);
flash_dev = NULL;
part_dev = NULL;
}
}
if (flash_dev)
{
rt_kprintf("Probed a flash device | %s | addr: %ld | len: %d |.\n", flash_dev->name,
flash_dev->addr, flash_dev->len);
}
else if (part_dev)
{
rt_kprintf("Probed a flash partition | %s | flash_dev: %s | offset: %ld | len: %d |.\n",
part_dev->name, part_dev->flash_name, part_dev->offset, part_dev->len);
}
else
{
rt_kprintf("No flash device or partition was probed.\n");
rt_kprintf("Usage: %s.\n", help_info[CMD_PROBE_INDEX]);
fal_show_part_table();
}
}
else
{
if (!flash_dev && !part_dev)
{
rt_kprintf("No flash device or partition was probed. Please run 'fal probe'.\n");
return;
}
if (!rt_strcmp(operator, "read"))
{
if (argc < 4)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_READ_INDEX]);
return;
}
else
{
addr = strtol(argv[2], NULL, 0);
size = strtol(argv[3], NULL, 0);
uint8_t *data = rt_malloc(size);
if (data)
{
if (flash_dev)
{
result = flash_dev->ops.read(addr, data, size);
}
else if (part_dev)
{
result = fal_partition_read(part_dev, addr, data, size);
}
if (result >= 0)
{
rt_kprintf("Read data success. Start from 0x%08X, size is %ld. The data is:\n", addr,
size);
rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
for (i = 0; i < size; i += HEXDUMP_WIDTH)
{
rt_kprintf("[%08X] ", addr + i);
/* dump hex */
for (j = 0; j < HEXDUMP_WIDTH; j++)
{
if (i + j < size)
{
rt_kprintf("%02X ", data[i + j]);
}
else
{
rt_kprintf(" ");
}
}
/* dump char for hex */
for (j = 0; j < HEXDUMP_WIDTH; j++)
{
if (i + j < size)
{
rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
}
}
rt_kprintf("\n");
}
rt_kprintf("\n");
}
rt_free(data);
}
else
{
rt_kprintf("Low memory!\n");
}
}
}
else if (!strcmp(operator, "write"))
{
if (argc < 4)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_WRITE_INDEX]);
return;
}
else
{
addr = strtol(argv[2], NULL, 0);
size = argc - 3;
uint8_t *data = rt_malloc(size);
if (data)
{
for (i = 0; i < size; i++)
{
data[i] = strtol(argv[3 + i], NULL, 0);
}
if (flash_dev)
{
result = flash_dev->ops.write(addr, data, size);
}
else if (part_dev)
{
result = fal_partition_write(part_dev, addr, data, size);
}
if (result >= 0)
{
rt_kprintf("Write data success. Start from 0x%08X, size is %ld.\n", addr, size);
rt_kprintf("Write data: ");
for (i = 0; i < size; i++)
{
rt_kprintf("%d ", data[i]);
}
rt_kprintf(".\n");
}
rt_free(data);
}
else
{
rt_kprintf("Low memory!\n");
}
}
}
else if (!rt_strcmp(operator, "erase"))
{
if (argc < 4)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_ERASE_INDEX]);
return;
}
else
{
addr = strtol(argv[2], NULL, 0);
size = strtol(argv[3], NULL, 0);
if (flash_dev)
{
result = flash_dev->ops.erase(addr, size);
}
else if (part_dev)
{
result = fal_partition_erase(part_dev, addr, size);
}
if (result >= 0)
{
rt_kprintf("Erase data success. Start from 0x%08X, size is %ld.\n", addr, size);
}
}
}
else if (!strcmp(operator, "bench"))
{
if (argc < 3)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_BENCH_INDEX]);
return;
}
else if ((argc > 3 && strcmp(argv[3], "yes")) || argc < 4)
{
rt_kprintf("DANGER: It will erase full chip or partition! Please run 'fal bench %d yes'.\n", strtol(argv[2], NULL, 0));
return;
}
/* full chip benchmark test */
uint32_t start_time, time_cast;
size_t write_size = strtol(argv[2], NULL, 0), read_size = strtol(argv[2], NULL, 0), cur_op_size;
uint8_t *write_data = (uint8_t *)rt_malloc(write_size), *read_data = (uint8_t *)rt_malloc(read_size);
if (write_data && read_data)
{
for (i = 0; i < write_size; i ++) {
write_data[i] = i & 0xFF;
}
if (flash_dev)
{
size = flash_dev->len;
}
else if (part_dev)
{
size = part_dev->len;
}
/* benchmark testing */
rt_kprintf("Erasing %ld bytes data, waiting...\n", size);
start_time = rt_tick_get();
if (flash_dev)
{
result = flash_dev->ops.erase(0, size);
}
else if (part_dev)
{
result = fal_partition_erase(part_dev, 0, size);
}
if (result >= 0)
{
time_cast = rt_tick_get() - start_time;
rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
}
else
{
rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
}
/* write test */
rt_kprintf("Writing %ld bytes data, waiting...\n", size);
start_time = rt_tick_get();
for (i = 0; i < size; i += write_size)
{
if (i + write_size <= size)
{
cur_op_size = write_size;
}
else
{
cur_op_size = size - i;
}
if (flash_dev)
{
result = flash_dev->ops.write(i, write_data, cur_op_size);
}
else if (part_dev)
{
result = fal_partition_write(part_dev, i, write_data, cur_op_size);
}
if (result < 0)
{
break;
}
}
if (result >= 0)
{
time_cast = rt_tick_get() - start_time;
rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
}
else
{
rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
}
/* read test */
rt_kprintf("Reading %ld bytes data, waiting...\n", size);
start_time = rt_tick_get();
for (i = 0; i < size; i += read_size)
{
if (i + read_size <= size)
{
cur_op_size = read_size;
}
else
{
cur_op_size = size - i;
}
if (flash_dev)
{
result = flash_dev->ops.read(i, read_data, cur_op_size);
}
else if (part_dev)
{
result = fal_partition_read(part_dev, i, read_data, cur_op_size);
}
/* data check */
for (size_t index = 0; index < cur_op_size; index ++)
{
if (write_data[index] != read_data[index])
{
rt_kprintf("%d %d %02x %02x.\n", i, index, write_data[index], read_data[index]);
}
}
if (memcmp(write_data, read_data, cur_op_size))
{
result = -RT_ERROR;
rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
}
/* has an error */
if (result < 0)
{
break;
}
}
if (result >= 0)
{
time_cast = rt_tick_get() - start_time;
rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
}
else
{
rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
}
}
else
{
rt_kprintf("Low memory!\n");
}
rt_free(write_data);
rt_free(read_data);
}
else
{
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(help_info) / sizeof(char*); i++)
{
rt_kprintf("%s\n", help_info[i]);
}
rt_kprintf("\n");
return;
}
if (result < 0) {
rt_kprintf("This operate has an error. Error code: %d.\n", result);
}
}
}
}
MSH_CMD_EXPORT(fal, FAL (Flash Abstraction Layer) operate.);
#endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
#endif /* RT_VER_NUM */