import RT-Thread@9217865c without bsp, libcpu and components/net

This commit is contained in:
Zihao Yu 2023-05-20 16:23:33 +08:00
commit e2376a3709
1414 changed files with 390370 additions and 0 deletions

View file

@ -0,0 +1,422 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
*/
#include <rtthread.h>
#include <drivers/usb_host.h>
#include "adk.h"
#ifdef RT_USBH_ADK
static struct uclass_driver adk_driver;
static const char* _adk_manufacturer = RT_NULL;
static const char* _adk_model = RT_NULL;
static const char* _adk_description = RT_NULL;
static const char* _adk_version = RT_NULL;
static const char* _adk_uri = RT_NULL;
static const char* _adk_serial = RT_NULL;
rt_err_t rt_usbh_adk_set_string(const char* manufacturer, const char* model,
const char* description, const char* _version, const char* uri,
const char* serial)
{
_adk_manufacturer = manufacturer;
_adk_model = model;
_adk_description = description;
_adk_version = _version;
_adk_uri = uri;
_adk_serial = serial;
return RT_EOK;
}
#ifdef RT_USING_MODULE
#include <rtm.h>
RTM_EXPORT(rt_usbh_adk_set_string);
#endif
/**
* This function will do USB_REQ_GET_PROTOCOL request to set idle period to the usb adk device
*
* @param intf the interface instance.
* @duration the idle period of requesting data.
* @report_id the report id
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_adk_get_protocol(struct uintf* intf, rt_uint16_t *protocol)
{
struct urequest setup;
uinst_t device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_IN | USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_DEVICE;
setup.request = USB_REQ_GET_PROTOCOL;
setup.index = 0;
setup.length = 2;
setup.value = 0;
if(rt_usb_hcd_control_xfer(device->hcd, device, &setup, (void*)protocol, 2,
timeout) == 0) return RT_EOK;
else return -RT_FALSE;
}
/**
* This function will do USB_REQ_SEND_STRING request to set idle period to the usb adk device
*
* @param intf the interface instance.
* @duration the idle period of requesting data.
* @report_id the report id
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_adk_send_string(struct uintf* intf, rt_uint16_t index,
const char* str)
{
struct urequest setup;
uinst_t device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_OUT | USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_DEVICE;
setup.request = USB_REQ_SEND_STRING;
setup.index = index;
setup.length = rt_strlen(str) + 1;
setup.value = 0;
if(rt_usb_hcd_control_xfer(device->hcd, device, &setup, (void*)str,
rt_strlen(str) + 1, timeout) == 0) return RT_EOK;
else return -RT_FALSE;
}
/**
* This function will do USB_REQ_START request to set idle period to the usb adk device
*
* @param intf the interface instance.
* @duration the idle period of requesting data.
* @report_id the report id
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_adk_start(struct uintf* intf)
{
struct urequest setup;
uinst_t device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_OUT | USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_DEVICE;
setup.request = USB_REQ_START;
setup.index = 0;
setup.length = 0;
setup.value = 0;
if(rt_usb_hcd_control_xfer(device->hcd, device, &setup, RT_NULL, 0,
timeout) == 0) return RT_EOK;
else return -RT_FALSE;
}
/**
* This function will read data from usb adk device
*
* @param intf the interface instance.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_ssize_t rt_usbh_adk_read(rt_device_t device, rt_off_t pos, void* buffer,
rt_size_t size)
{
uadk_t adk;
rt_size_t length;
struct uintf* intf;
/* check parameter */
RT_ASSERT(device != RT_NULL);
RT_ASSERT(buffer != RT_NULL);
intf = (struct uintf*)device->user_data;
adk = (uadk_t)intf->user_data;
length = rt_usb_hcd_bulk_xfer(intf->device->hcd, adk->pipe_in,
buffer, size, 300);
return length;
}
/**
* This function will write data to usb adk device
*
* @param intf the interface instance.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_ssize_t rt_usbh_adk_write (rt_device_t device, rt_off_t pos, const void* buffer,
rt_size_t size)
{
uadk_t adk;
rt_size_t length;
struct uintf* intf;
RT_ASSERT(buffer != RT_NULL);
intf = (struct uintf*)device->user_data;
adk = (uadk_t)intf->user_data;
length = rt_usb_hcd_bulk_xfer(intf->device->hcd, adk->pipe_out,
(void*)buffer, size, 300);
return length;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops adk_device_ops =
{
RT_NULL;
RT_NULL;
RT_NULL;
rt_usbh_adk_read;
rt_usbh_adk_write;
RT_NULL;
};
#endif
/**
* This function will run adk class driver when usb device is detected and identified
* as a adk class device, it will continue the enumulate process.
*
* @param arg the argument.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_adk_enable(void* arg)
{
int i = 0;
uadk_t adk;
struct uintf* intf = (struct uintf*)arg;
udev_desc_t dev_desc;
rt_uint16_t protocol;
rt_err_t ret;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_adk_run\n"));
dev_desc = &intf->device->dev_desc;
if(dev_desc->idVendor == USB_ACCESSORY_VENDOR_ID &&
(dev_desc->idProduct == USB_ACCESSORY_PRODUCT_ID ||
dev_desc->idProduct == USB_ACCESSORY_ADB_PRODUCT_ID))
{
if(intf->intf_desc->bInterfaceSubClass != 0xFF) return -RT_ERROR;
RT_DEBUG_LOG(RT_DEBUG_USB, ("found android accessory device\n"));
}
else
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("switch device\n"));
if((ret = rt_usbh_adk_get_protocol(intf, &protocol)) != RT_EOK)
{
rt_kprintf("rt_usbh_adk_get_protocol failed\n");
return ret;
}
if(protocol != 1)
{
rt_kprintf("read protocol failed\n");
return -RT_ERROR;
}
rt_usbh_adk_send_string(intf,
ACCESSORY_STRING_MANUFACTURER, _adk_manufacturer);
rt_usbh_adk_send_string(intf,
ACCESSORY_STRING_MODEL, _adk_model);
rt_usbh_adk_send_string(intf,
ACCESSORY_STRING_DESCRIPTION, _adk_description);
rt_usbh_adk_send_string(intf,
ACCESSORY_STRING_VERSION, _adk_version);
rt_usbh_adk_send_string(intf,
ACCESSORY_STRING_URI, _adk_uri);
rt_usbh_adk_send_string(intf,
ACCESSORY_STRING_SERIAL, _adk_serial);
RT_DEBUG_LOG(RT_DEBUG_USB, ("manufacturer %s\n", _adk_manufacturer));
RT_DEBUG_LOG(RT_DEBUG_USB, ("model %s\n", _adk_model));
RT_DEBUG_LOG(RT_DEBUG_USB, ("description %s\n", _adk_description));
RT_DEBUG_LOG(RT_DEBUG_USB, ("version %s\n", _adk_version));
RT_DEBUG_LOG(RT_DEBUG_USB, ("uri %s\n", _adk_uri));
RT_DEBUG_LOG(RT_DEBUG_USB, ("serial %s\n", _adk_serial));
if((ret = rt_usbh_adk_start(intf)) != RT_EOK)
{
rt_kprintf("rt_usbh_adk_start failed\n");
return ret;
}
return RT_EOK;
}
adk = rt_malloc(sizeof(struct uadkinst));
RT_ASSERT(adk != RT_NULL);
/* initilize the data structure */
rt_memset(adk, 0, sizeof(struct uadkinst));
intf->user_data = (void*)adk;
for(i=0; i<intf->intf_desc->bNumEndpoints; i++)
{
uep_desc_t ep_desc;
/* get endpoint descriptor from interface descriptor */
rt_usbh_get_endpoint_descriptor(intf->intf_desc, i, &ep_desc);
if(ep_desc == RT_NULL)
{
rt_kprintf("rt_usb_get_endpoint_descriptor error\n");
return -RT_ERROR;
}
/* the endpoint type of adk class should be BULK */
if((ep_desc->bmAttributes & USB_EP_ATTR_TYPE_MASK) != USB_EP_ATTR_BULK)
continue;
/* allocate pipes according to the endpoint type */
if(ep_desc->bEndpointAddress & USB_DIR_IN)
{
/* allocate an in pipe for the adk instance */
ret = rt_usb_hcd_alloc_pipe(intf->device->hcd, &adk->pipe_in,
intf, ep_desc, RT_NULL);
if(ret != RT_EOK) return ret;
}
else
{
/* allocate an output pipe for the adk instance */
ret = rt_usb_hcd_alloc_pipe(intf->device->hcd, &adk->pipe_out,
intf, ep_desc, RT_NULL);
if(ret != RT_EOK) return ret;
}
}
/* check pipes infomation */
if(adk->pipe_in == RT_NULL || adk->pipe_out == RT_NULL)
{
rt_kprintf("pipe error, unsupported device\n");
return -RT_ERROR;
}
/* set configuration */
ret = rt_usbh_set_configure(intf->device, 1);
if(ret != RT_EOK) return ret;
/* register adk device */
adk->device.type = RT_Device_Class_Char;
#ifdef RT_USING_DEVICE_OPS
adk->device.ops = &adk_device_ops;
#else
adk->device.init = RT_NULL;
adk->device.open = RT_NULL;
adk->device.close = RT_NULL;
adk->device.read = rt_usbh_adk_read;
adk->device.write = rt_usbh_adk_write;
adk->device.control = RT_NULL;
#endif
adk->device.user_data = (void*)intf;
rt_device_register(&adk->device, "adkdev", RT_DEVICE_FLAG_RDWR);
return RT_EOK;
}
/**
* This function will be invoked when usb device plug out is detected and it would clean
* and release all hub class related resources.
*
* @param arg the argument.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_adk_disable(void* arg)
{
uadk_t adk;
struct uintf* intf = (struct uintf*)arg;
RT_ASSERT(intf != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_adk_stop\n"));
adk = (uadk_t)intf->user_data;
if(adk == RT_NULL)
{
rt_free(intf);
return RT_EOK;
}
if(adk->pipe_in != RT_NULL)
rt_usb_hcd_free_pipe(intf->device->hcd, adk->pipe_in);
if(adk->pipe_out != RT_NULL)
rt_usb_hcd_free_pipe(intf->device->hcd, adk->pipe_out);
/* unregister adk device */
rt_device_unregister(&adk->device);
/* free adk instance */
if(adk != RT_NULL)
{
rt_free(adk);
}
/* free interface instance */
rt_free(intf);
return RT_EOK;
}
/**
* This function will register adk class driver to the usb class driver manager.
* and it should be invoked in the usb system initialization.
*
* @return the error code, RT_EOK on successfully.
*/
ucd_t rt_usbh_class_driver_adk(void)
{
adk_driver.class_code = USB_CLASS_ADK;
adk_driver.enable = rt_usbh_adk_enable;
adk_driver.disable = rt_usbh_adk_disable;
return &adk_driver;
}
#endif

View file

@ -0,0 +1,43 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
*/
#ifndef __ADK_H__
#define __ADK_H__
#include <rtthread.h>
struct uadkinst
{
upipe_t pipe_in;
upipe_t pipe_out;
struct rt_device device;
};
typedef struct uadkinst* uadk_t;
#define USB_ACCESSORY_VENDOR_ID 0x18D1
#define USB_ACCESSORY_PRODUCT_ID 0x2D00
#define USB_ACCESSORY_ADB_PRODUCT_ID 0x2D01
#define ACCESSORY_STRING_MANUFACTURER 0
#define ACCESSORY_STRING_MODEL 1
#define ACCESSORY_STRING_DESCRIPTION 2
#define ACCESSORY_STRING_VERSION 3
#define ACCESSORY_STRING_URI 4
#define ACCESSORY_STRING_SERIAL 5
#define USB_REQ_GET_PROTOCOL 51
#define USB_REQ_SEND_STRING 52
#define USB_REQ_START 53
#define USB_CLASS_ADK 0xff
#endif

View file

@ -0,0 +1,407 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
* 2021-02-23 Leslie Lee update with current usb api
*/
#include <rtthread.h>
#include <drivers/usb_host.h>
#include "hid.h"
#ifdef RT_USBH_HID
static struct uclass_driver hid_driver;
static rt_list_t _protocal_list;
/**
* This function will do USB_REQ_SET_IDLE request to set idle period to the usb hid device
*
* @param intf the interface instance.
* @duration the idle period of requesting data.
* @report_id the report id
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_hid_set_idle(struct uhintf* intf, int duration, int report_id)
{
struct urequest setup;
struct uinstance* device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USB_REQ_SET_IDLE;
setup.wIndex = 0;
setup.wLength = 0;
setup.wValue = (duration << 8 )| report_id;
if (rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) == 8)
if (rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_in, RT_NULL, 0, timeout) == 0)
return RT_EOK;
return -RT_FALSE;
}
/**
* This function will do USB_REQ_GET_REPORT request to get report from the usb hid device
*
* @param intf the interface instance.
* @buffer the data buffer to save usb report descriptor.
* @param nbytes the size of buffer
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_hid_get_report(struct uhintf* intf, rt_uint8_t type,
rt_uint8_t id, rt_uint8_t *buffer, rt_size_t size)
{
struct urequest setup;
struct uinstance* device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USB_REQ_GET_REPORT;
setup.wIndex = intf->intf_desc->bInterfaceNumber;
setup.wLength = size;
setup.wValue = (type << 8 ) + id;
if (rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) == 8)
{
if (rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_in, buffer, size, timeout) == size)
{
if (rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_out, RT_NULL, 0, timeout) == 0)
{
return RT_EOK;
}
}
}
else
return -RT_FALSE;
return -RT_FALSE;
}
/**
* This function will do USB_REQ_SET_REPORT request to set report to the usb hid device
*
* @param intf the interface instance.
* @buffer the data buffer to save usb report descriptor.
* @param nbytes the size of buffer
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_hid_set_report(struct uhintf* intf, rt_uint8_t *buffer, rt_size_t size)
{
struct urequest setup;
struct uinstance* device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USB_REQ_SET_REPORT;
setup.wIndex = intf->intf_desc->bInterfaceNumber;
setup.wLength = size;
setup.wValue = 0x02 << 8;
if (rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) == 8)
return RT_EOK;
else
return -RT_FALSE;
}
/**
* This function will do USB_REQ_SET_PROTOCOL request to set protocal to the usb hid device.
*
* @param intf the interface instance.
* @param protocol the protocol id.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_hid_set_protocal(struct uhintf* intf, int protocol)
{
struct urequest setup;
struct uinstance* device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USB_REQ_SET_PROTOCOL;
setup.wIndex = 0;
setup.wLength = 0;
setup.wValue = protocol;
if (rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) == 8)
return RT_EOK;
else
return -RT_FALSE;
}
/**
* This function will do USB_REQ_GET_DESCRIPTOR request for the device instance
* to set feature of the hub port.
*
* @param intf the interface instance.
* @buffer the data buffer to save usb report descriptor.
* @param nbytes the size of buffer
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_hid_get_report_descriptor(struct uhintf* intf,
rt_uint8_t *buffer, rt_size_t size)
{
struct urequest setup;
struct uinstance* device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
device = intf->device;
setup.request_type = USB_REQ_TYPE_DIR_IN | USB_REQ_TYPE_STANDARD|
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USB_REQ_GET_DESCRIPTOR;
setup.wIndex = 0;
setup.wLength = size;
setup.wValue = USB_DESC_TYPE_REPORT << 8;
if (rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) == 8)
{
if (rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_in, buffer, size, timeout) == size)
{
if (rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_out, RT_NULL, 0, timeout) == 0)
{
return RT_EOK;
}
}
}
else
return -RT_FALSE;
return -RT_FALSE;
}
/**
* This function will register specified hid protocal to protocal list
*
* @param protocal the specified protocal.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_hid_protocal_register(uprotocal_t protocal)
{
RT_ASSERT(protocal != RT_NULL);
if (protocal == RT_NULL) return -RT_ERROR;
/* insert class driver into driver list */
rt_list_insert_after(&_protocal_list, &(protocal->list));
return RT_EOK;
}
/**
* This function is the callback function of hid's int endpoint, it is invoked when data comes.
*
* @param context the context of the callback function.
*
* @return none.
*/
static void rt_usbh_hid_callback(void* context)
{
upipe_t pipe;
struct uhid* hid;
int timeout = USB_TIMEOUT_LONG;
/* parameter check */
RT_ASSERT(context != RT_NULL);
pipe = (upipe_t)context;
hid = (struct uhid*)((struct uhintf*)pipe->inst)->user_data;
/* invoke protocal callback function */
hid->protocal->callback((void*)hid);
/* parameter check */
RT_ASSERT(((struct uhintf*)pipe->inst)->device->hcd != RT_NULL);
rt_usb_hcd_pipe_xfer(((struct uhintf*)pipe->inst)->device->hcd, pipe,
hid->buffer, pipe->ep.wMaxPacketSize, timeout);
}
/**
* This function will find specified hid protocal from protocal list
*
* @param pro_id the protocal id.
*
* @return the found protocal or RT_NULL if there is no this protocal.
*/
static uprotocal_t rt_usbh_hid_protocal_find(int pro_id)
{
struct rt_list_node *node;
/* try to find protocal object */
for (node = _protocal_list.next; node != &_protocal_list; node = node->next)
{
uprotocal_t protocal =
(uprotocal_t)rt_list_entry(node, struct uprotocal, list);
if (protocal->pro_id == pro_id) return protocal;
}
/* not found */
return RT_NULL;
}
/**
* This function will run hid class driver when usb device is detected and identified
* as a hid class device, it will continue the enumulate process.
*
* @param arg the argument.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_hid_enable(void* arg)
{
int i = 0, pro_id;
uprotocal_t protocal;
struct uhid* hid;
struct uhintf* intf = (struct uhintf*)arg;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
pro_id = intf->intf_desc->bInterfaceProtocol;
RT_DEBUG_LOG(RT_DEBUG_USB,
("HID device enable, protocal id %d\n", pro_id));
protocal = rt_usbh_hid_protocal_find(pro_id);
if(protocal == RT_NULL)
{
rt_kprintf("can't find hid protocal %d\n", pro_id);
intf->user_data = RT_NULL;
return -RT_ERROR;
}
hid = rt_malloc(sizeof(struct uhid));
RT_ASSERT(hid != RT_NULL);
/* initilize the data structure */
rt_memset(hid, 0, sizeof(struct uhid));
intf->user_data = (void*)hid;
hid->protocal = protocal;
for(i=0; i<intf->intf_desc->bNumEndpoints; i++)
{
rt_err_t ret;
uep_desc_t ep_desc;
/* get endpoint descriptor */
rt_usbh_get_endpoint_descriptor(intf->intf_desc, i, &ep_desc);
if(ep_desc == RT_NULL)
{
rt_kprintf("rt_usbh_get_endpoint_descriptor error\n");
return -RT_ERROR;
}
if(USB_EP_ATTR(ep_desc->bmAttributes) != USB_EP_ATTR_INT)
continue;
if(!(ep_desc->bEndpointAddress & USB_DIR_IN)) continue;
ret = rt_usb_hcd_alloc_pipe(intf->device->hcd, &hid->pipe_in,
intf->device, ep_desc);
if(ret != RT_EOK) return ret;
}
/* initialize hid protocal */
hid->protocal->init((void*)intf);
return RT_EOK;
}
/**
* This function will be invoked when usb device plug out is detected and it would clean
* and release all hub class related resources.
*
* @param arg the argument.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_hid_disable(void* arg)
{
struct uhid* hid;
struct uhintf* intf = (struct uhintf*)arg;
RT_ASSERT(intf != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_hid_disable\n"));
hid = (struct uhid*)intf->user_data;
if(hid != RT_NULL)
{
if(hid->pipe_in != RT_NULL)
{
/* free the HID in pipe */
rt_usb_hcd_free_pipe(intf->device->hcd, hid->pipe_in);
}
/* free the hid instance */
rt_free(hid);
}
return RT_EOK;
}
/**
* This function will register hid class driver to the usb class driver manager.
* and it should be invoked in the usb system initialization.
*
* @return the error code, RT_EOK on successfully.
*/
ucd_t rt_usbh_class_driver_hid(void)
{
rt_list_init(&_protocal_list);
hid_driver.class_code = USB_CLASS_HID;
hid_driver.enable = rt_usbh_hid_enable;
hid_driver.disable = rt_usbh_hid_disable;
return &hid_driver;
}
#endif

View file

@ -0,0 +1,41 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
*/
#ifndef __HID_H__
#define __HID_H__
#include <rtthread.h>
struct uhid
{
upipe_t pipe_in;
rt_uint8_t buffer[8];
uprotocal_t protocal;
};
typedef struct uhid uhid_t;
#define USB_REQ_GET_REPORT 0x01
#define USB_REQ_GET_IDLE 0x02
#define USB_REQ_GET_PROTOCOL 0x03
#define USB_REQ_SET_REPORT 0x09
#define USB_REQ_SET_IDLE 0x0a
#define USB_REQ_SET_PROTOCOL 0x0b
#define USB_HID_KEYBOARD 1
#define USB_HID_MOUSE 2
rt_err_t rt_usbh_hid_set_idle(struct uhintf* intf, int duration, int report_id);
rt_err_t rt_usbh_hid_get_report(struct uhintf* intf, rt_uint8_t type, rt_uint8_t id, rt_uint8_t *buffer, rt_size_t size);
rt_err_t rt_usbh_hid_set_report(struct uhintf* intf, rt_uint8_t *buffer, rt_size_t size);
rt_err_t rt_usbh_hid_set_protocal(struct uhintf* intf, int protocol);
rt_err_t rt_usbh_hid_get_report_descriptor(struct uhintf* intf, rt_uint8_t *buffer, rt_size_t size);
rt_err_t rt_usbh_hid_protocal_register(uprotocal_t protocal);
#endif

View file

@ -0,0 +1,643 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
*/
#include <rtthread.h>
#include <drivers/usb_host.h>
#include "mass.h"
#ifdef RT_USBH_MSTORAGE
extern rt_err_t rt_udisk_run(struct uhintf* intf);
extern rt_err_t rt_udisk_stop(struct uhintf* intf);
static struct uclass_driver storage_driver;
/**
* This function will do USBREQ_GET_MAX_LUN request for the usb interface instance.
*
* @param intf the interface instance.
* @param max_lun the buffer to save max_lun.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t _pipe_check(struct uhintf* intf, upipe_t pipe)
{
struct uinstance* device;
rt_err_t ret;
ustor_t stor;
int size = 0;
struct ustorage_csw csw;
if(intf == RT_NULL || pipe == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
/* get usb device instance from the interface instance */
device = intf->device;
/* get storage instance from the interface instance */
stor = (ustor_t)intf->user_data;
/* check pipe status */
if(pipe->status == UPIPE_STATUS_OK) return RT_EOK;
if(pipe->status == UPIPE_STATUS_ERROR)
{
rt_kprintf("pipe status error\n");
return -RT_EIO;
}
if(pipe->status == UPIPE_STATUS_STALL)
{
/* clear the pipe stall status */
ret = rt_usbh_clear_feature(device, pipe->ep.bEndpointAddress,
USB_FEATURE_ENDPOINT_HALT);
if(ret != RT_EOK) return ret;
}
rt_thread_delay(50);
rt_kprintf("pipes1 0x%x, 0x%x\n", stor->pipe_in, stor->pipe_out);
stor->pipe_in->status = UPIPE_STATUS_OK;
RT_DEBUG_LOG(RT_DEBUG_USB, ("clean storage in pipe stall\n"));
/* it should receive csw after clear the stall feature */
size = rt_usb_hcd_pipe_xfer(stor->pipe_in->inst->hcd,
stor->pipe_in, &csw, SIZEOF_CSW, 100);
if(size != SIZEOF_CSW)
{
rt_kprintf("receive the csw after stall failed\n");
return -RT_EIO;
}
return -RT_ERROR;
}
/**
* This function will do USBREQ_GET_MAX_LUN request for the usb interface instance.
*
* @param intf the interface instance.
* @param max_lun the buffer to save max_lun.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usb_bulk_only_xfer(struct uhintf* intf,
ustorage_cbw_t cmd, rt_uint8_t* buffer, int timeout)
{
rt_size_t size;
rt_err_t ret;
upipe_t pipe;
struct ustorage_csw csw;
ustor_t stor;
RT_ASSERT(cmd != RT_NULL);
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
/* get storage instance from the interface instance */
stor = (ustor_t)intf->user_data;
do
{
/* send the cbw */
size = rt_usb_hcd_pipe_xfer(stor->pipe_out->inst->hcd, stor->pipe_out,
cmd, SIZEOF_CBW, timeout);
if(size != SIZEOF_CBW)
{
rt_kprintf("CBW size error\n");
return -RT_EIO;
}
if(cmd->xfer_len != 0)
{
pipe = (cmd->dflags == CBWFLAGS_DIR_IN) ? stor->pipe_in :
stor->pipe_out;
size = rt_usb_hcd_pipe_xfer(pipe->inst->hcd, pipe, (void*)buffer,
cmd->xfer_len, timeout);
if(size != cmd->xfer_len)
{
rt_kprintf("request size %d, transfer size %d\n",
cmd->xfer_len, size);
break;
}
}
/* receive the csw */
size = rt_usb_hcd_pipe_xfer(stor->pipe_in->inst->hcd, stor->pipe_in,
&csw, SIZEOF_CSW, timeout);
if(size != SIZEOF_CSW)
{
rt_kprintf("csw size error\n");
return -RT_EIO;
}
}while(0);
/* check in pipes status */
ret = _pipe_check(intf, stor->pipe_in);
if(ret != RT_EOK)
{
rt_kprintf("in pipe error\n");
return ret;
}
/* check out pipes status */
ret = _pipe_check(intf, stor->pipe_out);
if(ret != RT_EOK)
{
rt_kprintf("out pipe error\n");
return ret;
}
/* check csw status */
if(csw.signature != CSW_SIGNATURE || csw.tag != CBW_TAG_VALUE)
{
rt_kprintf("csw signature error\n");
return -RT_EIO;
}
if(csw.status != 0)
{
//rt_kprintf("csw status error:%d\n",csw.status);
return -RT_ERROR;
}
return RT_EOK;
}
/**
* This function will do USBREQ_GET_MAX_LUN request for the usb interface instance.
*
* @param intf the interface instance.
* @param max_lun the buffer to save max_lun.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_get_max_lun(struct uhintf* intf, rt_uint8_t* max_lun)
{
struct uinstance* device;
struct urequest setup;
int timeout = USB_TIMEOUT_BASIC;
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
/* parameter check */
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_get_max_lun\n"));
/* get usb device instance from the interface instance */
device = intf->device;
/* construct the request */
setup.request_type = USB_REQ_TYPE_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USBREQ_GET_MAX_LUN;
setup.wValue = intf->intf_desc->bInterfaceNumber;
setup.wIndex = 0;
setup.wLength = 1;
/* do control transfer request */
if(rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) != 8)
{
return -RT_EIO;
}
if(rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_in, max_lun, 1, timeout) != 1)
{
return -RT_EIO;
}
if(rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_out, RT_NULL, 0, timeout) != 0)
{
return -RT_EIO;
}
return RT_EOK;
}
/**
* This function will do USBREQ_MASS_STORAGE_RESET request for the usb interface instance.
*
* @param intf the interface instance.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_reset(struct uhintf* intf)
{
struct urequest setup;
struct uinstance* device;
int timeout = USB_TIMEOUT_BASIC;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_reset\n"));
/* get usb device instance from the interface instance */
device = intf->device;
/* construct the request */
setup.request_type = USB_REQ_TYPE_DIR_OUT | USB_REQ_TYPE_CLASS |
USB_REQ_TYPE_INTERFACE;
setup.bRequest = USBREQ_MASS_STORAGE_RESET;
setup.wIndex = intf->intf_desc->bInterfaceNumber;
setup.wLength = 0;
setup.wValue = 0;
if(rt_usb_hcd_setup_xfer(device->hcd, device->pipe_ep0_out, &setup, timeout) != 8)
{
return -RT_EIO;
}
if(rt_usb_hcd_pipe_xfer(device->hcd, device->pipe_ep0_in, RT_NULL, 0, timeout) != 0)
{
return -RT_EIO;
}
return RT_EOK;
}
/**
* This function will execute SCSI_READ_10 command to read data from the usb device.
*
* @param intf the interface instance.
* @param buffer the data buffer to save read data
* @param sector the start sector address to read.
* @param sector the sector count to read.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_read10(struct uhintf* intf, rt_uint8_t *buffer,
rt_uint32_t sector, rt_size_t count, int timeout)
{
struct ustorage_cbw cmd;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_read10\n"));
/* construct the command block wrapper */
rt_memset(&cmd, 0, sizeof(struct ustorage_cbw));
cmd.signature = CBW_SIGNATURE;
cmd.tag = CBW_TAG_VALUE;
cmd.xfer_len = SECTOR_SIZE * count;
cmd.dflags = CBWFLAGS_DIR_IN;
cmd.lun = 0;
cmd.cb_len = 10;
cmd.cb[0] = SCSI_READ_10;
cmd.cb[1] = 0;
cmd.cb[2] = (rt_uint8_t)(sector >> 24);
cmd.cb[3] = (rt_uint8_t)(sector >> 16);
cmd.cb[4] = (rt_uint8_t)(sector >> 8);
cmd.cb[5] = (rt_uint8_t)sector;
cmd.cb[6] = 0;
cmd.cb[7] = (count & 0xff00) >> 8;
cmd.cb[8] = (rt_uint8_t) count & 0xff;
return rt_usb_bulk_only_xfer(intf, &cmd, buffer, timeout);
}
/**
* This function will execute SCSI_WRITE_10 command to write data to the usb device.
*
* @param intf the interface instance.
* @param buffer the data buffer to save write data
* @param sector the start sector address to write.
* @param sector the sector count to write.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_write10(struct uhintf* intf, rt_uint8_t *buffer,
rt_uint32_t sector, rt_size_t count, int timeout)
{
struct ustorage_cbw cmd;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_write10\n"));
/* construct the command block wrapper */
rt_memset(&cmd, 0, sizeof(struct ustorage_cbw));
cmd.signature = CBW_SIGNATURE;
cmd.tag = CBW_TAG_VALUE;
cmd.xfer_len = SECTOR_SIZE * count;
cmd.dflags = CBWFLAGS_DIR_OUT;
cmd.lun = 0;
cmd.cb_len = 10;
cmd.cb[0] = SCSI_WRITE_10;
cmd.cb[1] = 0;
cmd.cb[2] = (rt_uint8_t)(sector >> 24);
cmd.cb[3] = (rt_uint8_t)(sector >> 16);
cmd.cb[4] = (rt_uint8_t)(sector >> 8);
cmd.cb[5] = (rt_uint8_t)sector;
cmd.cb[6] = 0;
cmd.cb[7] = (count & 0xff00) >> 8;
cmd.cb[8] = (rt_uint8_t) count & 0xff;
return rt_usb_bulk_only_xfer(intf, &cmd, buffer, timeout);
}
/**
* This function will execute SCSI_REQUEST_SENSE command to get sense data.
*
* @param intf the interface instance.
* @param buffer the data buffer to save sense data
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_request_sense(struct uhintf* intf, rt_uint8_t* buffer)
{
struct ustorage_cbw cmd;
int timeout = USB_TIMEOUT_LONG;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_request_sense\n"));
/* construct the command block wrapper */
rt_memset(&cmd, 0, sizeof(struct ustorage_cbw));
cmd.signature = CBW_SIGNATURE;
cmd.tag = CBW_TAG_VALUE;
cmd.xfer_len = 18;
cmd.dflags = CBWFLAGS_DIR_IN;
cmd.lun = 0;
cmd.cb_len = 6;
cmd.cb[0] = SCSI_REQUEST_SENSE;
cmd.cb[4] = 18;
return rt_usb_bulk_only_xfer(intf, &cmd, buffer, timeout);
}
/**
* This function will execute SCSI_TEST_UNIT_READY command to get unit ready status.
*
* @param intf the interface instance.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_test_unit_ready(struct uhintf* intf)
{
struct ustorage_cbw cmd;
int timeout = USB_TIMEOUT_LONG;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_test_unit_ready\n"));
/* construct the command block wrapper */
rt_memset(&cmd, 0, sizeof(struct ustorage_cbw));
cmd.signature = CBW_SIGNATURE;
cmd.tag = CBW_TAG_VALUE;
cmd.xfer_len = 0;
cmd.dflags = CBWFLAGS_DIR_OUT;
cmd.lun = 0;
cmd.cb_len = 12;
cmd.cb[0] = SCSI_TEST_UNIT_READY;
return rt_usb_bulk_only_xfer(intf, &cmd, RT_NULL, timeout);
}
/**
* This function will execute SCSI_INQUIRY_CMD command to get inquiry data.
*
* @param intf the interface instance.
* @param buffer the data buffer to save inquiry data
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_inquiry(struct uhintf* intf, rt_uint8_t* buffer)
{
struct ustorage_cbw cmd;
int timeout = USB_TIMEOUT_LONG;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_inquiry\n"));
/* construct the command block wrapper */
rt_memset(&cmd, 0, sizeof(struct ustorage_cbw));
cmd.signature = CBW_SIGNATURE;
cmd.tag = CBW_TAG_VALUE;
cmd.xfer_len = 36;
cmd.dflags = CBWFLAGS_DIR_IN;
cmd.lun = 0;
cmd.cb_len = 6;//12
cmd.cb[0] = SCSI_INQUIRY_CMD;
cmd.cb[4] = 36;
return rt_usb_bulk_only_xfer(intf, &cmd, buffer, timeout);
}
/**
* This function will execute SCSI_READ_CAPACITY command to get capacity data.
*
* @param intf the interface instance.
* @param buffer the data buffer to save capacity data
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_usbh_storage_get_capacity(struct uhintf* intf, rt_uint8_t* buffer)
{
struct ustorage_cbw cmd;
int timeout = USB_TIMEOUT_LONG;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_get_capacity\n"));
/* construct the command block wrapper */
rt_memset(&cmd, 0, sizeof(struct ustorage_cbw));
cmd.signature = CBW_SIGNATURE;
cmd.tag = CBW_TAG_VALUE;
cmd.xfer_len = 8;
cmd.dflags = CBWFLAGS_DIR_IN;
cmd.lun = 0;
cmd.cb_len = 12;
cmd.cb[0] = SCSI_READ_CAPACITY;
return rt_usb_bulk_only_xfer(intf, &cmd, buffer, timeout);
}
/**
* This function will run mass storage class driver when usb device is detected
* and identified as a mass storage class device, it will continue to do the enumulate
* process.
*
* @param arg the argument.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_storage_enable(void* arg)
{
int i = 0;
rt_err_t ret;
ustor_t stor;
struct uhintf* intf = (struct uhintf*)arg;
/* parameter check */
if(intf == RT_NULL)
{
rt_kprintf("the interface is not available\n");
return -RT_EIO;
}
RT_DEBUG_LOG(RT_DEBUG_USB, ("subclass %d, protocal %d\n",
intf->intf_desc->bInterfaceSubClass,
intf->intf_desc->bInterfaceProtocol));
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_run\n"));
/* only support SCSI subclass and bulk only protocal */
stor = rt_malloc(sizeof(struct ustor));
RT_ASSERT(stor != RT_NULL);
/* initilize the data structure */
rt_memset(stor, 0, sizeof(struct ustor));
intf->user_data = (void*)stor;
for(i=0; i<intf->intf_desc->bNumEndpoints; i++)
{
uep_desc_t ep_desc;
/* get endpoint descriptor from interface descriptor */
rt_usbh_get_endpoint_descriptor(intf->intf_desc, i, &ep_desc);
if(ep_desc == RT_NULL)
{
rt_kprintf("rt_usb_get_endpoint_descriptor error\n");
return -RT_ERROR;
}
/* the endpoint type of mass storage class should be BULK */
if((ep_desc->bmAttributes & USB_EP_ATTR_TYPE_MASK) != USB_EP_ATTR_BULK)
continue;
/* allocate pipes according to the endpoint type */
if(ep_desc->bEndpointAddress & USB_DIR_IN)
{
/* alloc an in pipe for the storage instance */
stor->pipe_in = rt_usb_instance_find_pipe(intf->device,ep_desc->bEndpointAddress);
}
else
{
/* alloc an output pipe for the storage instance */
stor->pipe_out = rt_usb_instance_find_pipe(intf->device,ep_desc->bEndpointAddress);
}
}
/* check pipes infomation */
if(stor->pipe_in == RT_NULL || stor->pipe_out == RT_NULL)
{
rt_kprintf("pipe error, unsupported device\n");
return -RT_ERROR;
}
/* should implement as callback */
ret = rt_udisk_run(intf);
if(ret != RT_EOK) return ret;
return RT_EOK;
}
/**
* This function will be invoked when usb device plug out is detected and it would clean
* and release all mass storage class related resources.
*
* @param arg the argument.
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_usbh_storage_disable(void* arg)
{
ustor_t stor;
struct uhintf* intf = (struct uhintf*)arg;
/* parameter check */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->user_data != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbh_storage_stop\n"));
/* get storage instance from interface instance */
stor = (ustor_t)intf->user_data;
rt_udisk_stop(intf);
/* free storage instance */
if(stor != RT_NULL) rt_free(stor);
return RT_EOK;
}
/**
* This function will register mass storage class driver to the usb class driver manager.
* and it should be invoked in the usb system initialization.
*
* @return the error code, RT_EOK on successfully.
*/
ucd_t rt_usbh_class_driver_storage(void)
{
storage_driver.class_code = USB_CLASS_MASS_STORAGE;
storage_driver.enable = rt_usbh_storage_enable;
storage_driver.disable = rt_usbh_storage_disable;
return &storage_driver;
}
#endif

View file

@ -0,0 +1,50 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
*/
#ifndef __MASS_H__
#define __MASS_H__
#include <rtthread.h>
#include "dfs_fs.h"
#define MAX_PARTITION_COUNT 4
#define SECTOR_SIZE 512
struct ustor_data
{
struct dfs_partition part;
struct uhintf* intf;
int udisk_id;
const char path;
};
struct ustor
{
upipe_t pipe_in;
upipe_t pipe_out;
rt_uint32_t capicity[2];
struct rt_device dev[MAX_PARTITION_COUNT];
rt_uint8_t dev_cnt;
};
typedef struct ustor* ustor_t;
rt_err_t rt_usbh_storage_get_max_lun(struct uhintf* intf, rt_uint8_t* max_lun);
rt_err_t rt_usbh_storage_reset(struct uhintf* intf);
rt_err_t rt_usbh_storage_read10(struct uhintf* intf, rt_uint8_t *buffer,
rt_uint32_t sector, rt_size_t count, int timeout);
rt_err_t rt_usbh_storage_write10(struct uhintf* intf, rt_uint8_t *buffer,
rt_uint32_t sector, rt_size_t count, int timeout);
rt_err_t rt_usbh_storage_request_sense(struct uhintf* intf, rt_uint8_t* buffer);
rt_err_t rt_usbh_storage_test_unit_ready(struct uhintf* intf);
rt_err_t rt_usbh_storage_inquiry(struct uhintf* intf, rt_uint8_t* buffer);
rt_err_t rt_usbh_storage_get_capacity(struct uhintf* intf, rt_uint8_t* buffer);
#endif

View file

@ -0,0 +1,456 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-12-12 Yi Qiu first version
*/
#include <rtthread.h>
#include <dfs_fs.h>
#include <drivers/usb_host.h>
#include "mass.h"
#define DBG_TAG "usbhost.udisk"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_USBH_MSTORAGE
#define UDISK_MAX_COUNT 8
static rt_uint8_t _udisk_idset = 0;
static int udisk_get_id(void)
{
int i;
for(i=0; i< UDISK_MAX_COUNT; i++)
{
if((_udisk_idset & (1 << i)) != 0) continue;
else break;
}
/* it should not happen */
if(i == UDISK_MAX_COUNT) RT_ASSERT(0);
_udisk_idset |= (1 << i);
return i;
}
static void udisk_free_id(int id)
{
RT_ASSERT(id < UDISK_MAX_COUNT)
_udisk_idset &= ~(1 << id);
}
/**
* This function will initialize the udisk device
*
* @param dev the pointer of device driver structure
*
* @return RT_EOK
*/
static rt_err_t rt_udisk_init(rt_device_t dev)
{
return RT_EOK;
}
/**
* This function will read some data from a device.
*
* @param dev the pointer of device driver structure
* @param pos the position of reading
* @param buffer the data buffer to save read data
* @param size the size of buffer
*
* @return the actually read size on successful, otherwise negative returned.
*/
static rt_ssize_t rt_udisk_read(rt_device_t dev, rt_off_t pos, void* buffer,
rt_size_t size)
{
rt_err_t ret;
struct uhintf* intf;
struct ustor_data* data;
int timeout = USB_TIMEOUT_LONG;
/* check parameter */
RT_ASSERT(dev != RT_NULL);
RT_ASSERT(buffer != RT_NULL);
if(size > 4096) timeout *= 2;
data = (struct ustor_data*)dev->user_data;
intf = data->intf;
ret = rt_usbh_storage_read10(intf, (rt_uint8_t*)buffer, pos, size, timeout);
if (ret != RT_EOK)
{
rt_kprintf("usb mass_storage read failed\n");
return 0;
}
return size;
}
/**
* This function will write some data to a device.
*
* @param dev the pointer of device driver structure
* @param pos the position of written
* @param buffer the data buffer to be written to device
* @param size the size of buffer
*
* @return the actually written size on successful, otherwise negative returned.
*/
static rt_ssize_t rt_udisk_write (rt_device_t dev, rt_off_t pos, const void* buffer,
rt_size_t size)
{
rt_err_t ret;
struct uhintf* intf;
struct ustor_data* data;
int timeout = USB_TIMEOUT_LONG;
/* check parameter */
RT_ASSERT(dev != RT_NULL);
RT_ASSERT(buffer != RT_NULL);
if(size * SECTOR_SIZE > 4096) timeout *= 2;
data = (struct ustor_data*)dev->user_data;
intf = data->intf;
ret = rt_usbh_storage_write10(intf, (rt_uint8_t*)buffer, pos, size, timeout);
if (ret != RT_EOK)
{
rt_kprintf("usb mass_storage write %d sector failed\n", size);
return 0;
}
return size;
}
/**
* This function will execute SCSI_INQUIRY_CMD command to get inquiry data.
*
* @param intf the interface instance.
* @param buffer the data buffer to save inquiry data
*
* @return the error code, RT_EOK on successfully.
*/
static rt_err_t rt_udisk_control(rt_device_t dev, int cmd, void *args)
{
ustor_t stor;
struct ustor_data* data;
/* check parameter */
RT_ASSERT(dev != RT_NULL);
data = (struct ustor_data*)dev->user_data;
stor = (ustor_t)data->intf->user_data;
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL) return -RT_ERROR;
geometry->bytes_per_sector = SECTOR_SIZE;
geometry->block_size = stor->capicity[1];
geometry->sector_count = stor->capicity[0];
}
return RT_EOK;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops udisk_device_ops =
{
rt_udisk_init,
RT_NULL,
RT_NULL,
rt_udisk_read,
rt_udisk_write,
rt_udisk_control
};
#endif
/**
* This function will run udisk driver when usb disk is detected.
*
* @param intf the usb interface instance.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_udisk_run(struct uhintf* intf)
{
int i = 0;
rt_err_t ret;
char dname[8];
char sname[8];
rt_uint8_t max_lun, *sector, sense[18], inquiry[36];
struct dfs_partition part[MAX_PARTITION_COUNT];
ustor_t stor;
/* check parameter */
RT_ASSERT(intf != RT_NULL);
/* set interface */
// ret = rt_usbh_set_interface(intf->device, intf->intf_desc->bInterfaceNumber);
// if(ret != RT_EOK)
// rt_usbh_clear_feature(intf->device, 0, USB_FEATURE_ENDPOINT_HALT);
/* reset mass storage class device */
ret = rt_usbh_storage_reset(intf);
if(ret != RT_EOK) return ret;
stor = (ustor_t)intf->user_data;
/* get max logic unit number */
ret = rt_usbh_storage_get_max_lun(intf, &max_lun);
if(ret != RT_EOK)
rt_usbh_clear_feature(intf->device, 0, USB_FEATURE_ENDPOINT_HALT);
/* reset pipe in endpoint */
if(stor->pipe_in->status == UPIPE_STATUS_STALL)
{
ret = rt_usbh_clear_feature(intf->device,
stor->pipe_in->ep.bEndpointAddress, USB_FEATURE_ENDPOINT_HALT);
if(ret != RT_EOK) return ret;
}
/* reset pipe out endpoint */
if(stor->pipe_out->status == UPIPE_STATUS_STALL)
{
ret = rt_usbh_clear_feature(intf->device,
stor->pipe_out->ep.bEndpointAddress, USB_FEATURE_ENDPOINT_HALT);
if(ret != RT_EOK) return ret;
}
while((ret = rt_usbh_storage_inquiry(intf, inquiry)) != RT_EOK)
{
if(ret == -RT_EIO) return ret;
rt_thread_delay(5);
if(i++ < 10) continue;
rt_kprintf("rt_usbh_storage_inquiry error\n");
return -RT_ERROR;
}
i = 0;
/* wait device ready */
while((ret = rt_usbh_storage_test_unit_ready(intf)) != RT_EOK)
{
if(ret == -RT_EIO) return ret;
ret = rt_usbh_storage_request_sense(intf, sense);
if(ret == -RT_EIO) return ret;
rt_thread_delay(10);
if(i++ < 10) continue;
rt_kprintf("rt_usbh_storage_test_unit_ready error\n");
return -RT_ERROR;
}
i = 0;
rt_memset(stor->capicity, 0, sizeof(stor->capicity));
/* get storage capacity */
while((ret = rt_usbh_storage_get_capacity(intf,
(rt_uint8_t*)stor->capicity)) != RT_EOK)
{
if(ret == -RT_EIO) return ret;
rt_thread_delay(50);
if(i++ < 10) continue;
stor->capicity[0] = 2880;
stor->capicity[1] = 0x200;
rt_kprintf("rt_usbh_storage_get_capacity error\n");
break;
}
stor->capicity[0] = uswap_32(stor->capicity[0]);
stor->capicity[1] = uswap_32(stor->capicity[1]);
stor->capicity[0] += 1;
RT_DEBUG_LOG(RT_DEBUG_USB, ("capicity %d, block size %d\n",
stor->capicity[0], stor->capicity[1]));
/* get the first sector to read partition table */
sector = (rt_uint8_t*) rt_malloc (SECTOR_SIZE);
if (sector == RT_NULL)
{
rt_kprintf("allocate partition sector buffer failed\n");
return -RT_ERROR;
}
rt_memset(sector, 0, SECTOR_SIZE);
RT_DEBUG_LOG(RT_DEBUG_USB, ("read partition table\n"));
/* get the partition table */
ret = rt_usbh_storage_read10(intf, sector, 0, 1, USB_TIMEOUT_LONG);
if(ret != RT_EOK)
{
rt_kprintf("read parition table error\n");
rt_free(sector);
return -RT_ERROR;
}
RT_DEBUG_LOG(RT_DEBUG_USB, ("finished reading partition\n"));
for(i=0; i<MAX_PARTITION_COUNT; i++)
{
/* get the first partition */
ret = dfs_filesystem_get_partition(&part[i], sector, i);
if (ret == RT_EOK)
{
struct ustor_data* data = rt_malloc(sizeof(struct ustor_data));
if (data == RT_NULL)
{
LOG_E("Allocate partition data buffer failed.");
continue;
}
rt_memset(data, 0, sizeof(struct ustor_data));
data->intf = intf;
data->udisk_id = udisk_get_id();
rt_snprintf(dname, 6, "ud%d-%d", data->udisk_id, i);
rt_snprintf(sname, 8, "sem_ud%d", i);
data->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register sdcard device */
stor->dev[i].type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
stor->dev[i].ops = &udisk_device_ops;
#else
stor->dev[i].init = rt_udisk_init;
stor->dev[i].read = rt_udisk_read;
stor->dev[i].write = rt_udisk_write;
stor->dev[i].control = rt_udisk_control;
#endif
stor->dev[i].user_data = (void*)data;
rt_device_register(&stor->dev[i], dname, RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
stor->dev_cnt++;
if (dfs_mount(stor->dev[i].parent.name, UDISK_MOUNTPOINT, "elm",
0, 0) == 0)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("udisk part %d mount successfully\n", i));
}
else
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("udisk part %d mount failed\n", i));
}
}
else
{
if(i == 0)
{
struct ustor_data* data = rt_malloc(sizeof(struct ustor_data));
if (data == RT_NULL)
{
LOG_E("Allocate partition data buffer failed.");
break;
}
rt_memset(data, 0, sizeof(struct ustor_data));
data->udisk_id = udisk_get_id();
/* there is no partition table */
data->part.offset = 0;
data->part.size = 0;
data->intf = intf;
data->part.lock = rt_sem_create("sem_ud", 1, RT_IPC_FLAG_FIFO);
rt_snprintf(dname, 7, "udisk%d", data->udisk_id);
/* register sdcard device */
stor->dev[0].type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
stor->dev[i].ops = &udisk_device_ops;
#else
stor->dev[0].init = rt_udisk_init;
stor->dev[0].read = rt_udisk_read;
stor->dev[0].write = rt_udisk_write;
stor->dev[0].control = rt_udisk_control;
#endif
stor->dev[0].user_data = (void*)data;
rt_device_register(&stor->dev[0], dname,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE
| RT_DEVICE_FLAG_STANDALONE);
stor->dev_cnt++;
if (dfs_mount(stor->dev[0].parent.name, UDISK_MOUNTPOINT,
"elm", 0, 0) == 0)
{
rt_kprintf("Mount FAT on Udisk successful.\n");
}
else
{
rt_kprintf("Mount FAT on Udisk failed.\n");
}
}
break;
}
}
rt_free(sector);
return RT_EOK;
}
/**
* This function will be invoked when usb disk plug out is detected and it would clean
* and release all udisk related resources.
*
* @param intf the usb interface instance.
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_udisk_stop(struct uhintf* intf)
{
int i;
ustor_t stor;
struct ustor_data* data;
/* check parameter */
RT_ASSERT(intf != RT_NULL);
RT_ASSERT(intf->device != RT_NULL);
stor = (ustor_t)intf->user_data;
RT_ASSERT(stor != RT_NULL);
for(i=0; i<stor->dev_cnt; i++)
{
rt_device_t dev = &stor->dev[i];
data = (struct ustor_data*)dev->user_data;
/* unmount filesystem */
dfs_unmount(UDISK_MOUNTPOINT);
/* delete semaphore */
rt_sem_delete(data->part.lock);
udisk_free_id(data->udisk_id);
rt_free(data);
/* unregister device */
rt_device_unregister(&stor->dev[i]);
}
return RT_EOK;
}
#endif

View file

@ -0,0 +1,89 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2012-01-03 Yi Qiu first version
*/
#include <rtthread.h>
#include <drivers/usb_host.h>
#include "hid.h"
#if defined(RT_USBH_HID) && defined(RT_USBH_HID_KEYBOARD)
static struct uprotocal kbd_protocal;
static rt_err_t rt_usbh_hid_kbd_callback(void* arg)
{
int int1, int2;
struct uhid* hid;
hid = (struct uhid*)arg;
int1 = *(rt_uint32_t*)hid->buffer;
int2 = *(rt_uint32_t*)(&hid->buffer[4]);
if(int1 != 0 || int2 != 0)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("key down 0x%x, 0x%x\n", int1, int2));
}
return RT_EOK;
}
static rt_thread_t kbd_thread;
static void kbd_task(void* param)
{
struct uhintf* intf = (struct uhintf*)param;
while (1)
{
if (rt_usb_hcd_pipe_xfer(intf->device->hcd, ((struct uhid*)intf->user_data)->pipe_in,
((struct uhid*)intf->user_data)->buffer, ((struct uhid*)intf->user_data)->pipe_in->ep.wMaxPacketSize,
USB_TIMEOUT_BASIC) == 0)
{
break;
}
rt_usbh_hid_kbd_callback(intf->user_data);
}
}
static rt_err_t rt_usbh_hid_kbd_init(void* arg)
{
struct uhintf* intf = (struct uhintf*)arg;
RT_ASSERT(intf != RT_NULL);
rt_usbh_hid_set_protocal(intf, 0);
rt_usbh_hid_set_idle(intf, 10, 0);
RT_DEBUG_LOG(RT_DEBUG_USB, ("start usb keyboard\n"));
kbd_thread = rt_thread_create("kbd0", kbd_task, intf, 1024, 8, 100);
rt_thread_startup(kbd_thread);
return RT_EOK;
}
/**
* This function will define the hid keyboard protocal, it will be register to the protocal list.
*
* @return the keyboard protocal structure.
*/
uprotocal_t rt_usbh_hid_protocal_kbd(void)
{
kbd_protocal.pro_id = USB_HID_KEYBOARD;
kbd_protocal.init = rt_usbh_hid_kbd_init;
kbd_protocal.callback = rt_usbh_hid_kbd_callback;
return &kbd_protocal;
}
#endif

View file

@ -0,0 +1,185 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2012-01-03 Yi Qiu first version
*/
#include <rtthread.h>
#include <drivers/usb_host.h>
#include "hid.h"
#ifdef RT_USING_RTGUI
#include <rtgui/event.h>
#include <rtgui/rtgui_server.h>
#include "drv_lcd.h"
#endif
#if defined(RT_USBH_HID) && defined(RT_USBH_HID_MOUSE)
static struct uprotocal mouse_protocal;
#ifdef RT_USING_RTGUI
#define LKEY_PRESS 0x01
#define RKEY_PRESS 0x02
#define MKEY_PRESS 0x04
#define MOUSE_SCALING 0x02
static rt_bool_t lkey_down=RT_FALSE;
//static rt_bool_t rkey_down=RT_FALSE;
//static rt_bool_t mkey_down=RT_FALSE;
static struct rtgui_event_mouse emouse;
#endif
static rt_err_t rt_usbh_hid_mouse_callback(void* arg)
{
struct uhid* hid;
#ifdef RT_USING_RTGUI
rt_uint16_t xoffset=0;
rt_uint16_t yoffset=0;
#endif
hid = (struct uhid*)arg;
RT_DEBUG_LOG(RT_DEBUG_USB, ("hid 0x%x 0x%x\n",
*(rt_uint32_t*)hid->buffer,
*(rt_uint32_t*)(&hid->buffer[4])));
#ifdef RT_USING_RTGUI
if(hid->buffer[1]!=0)
{
if(hid->buffer[1]>127)
{
xoffset=(256-hid->buffer[1])*MOUSE_SCALING;
if(emouse.x>xoffset)
{
emouse.x-=xoffset;
}
else
{
emouse.x=0;
}
}
else
{
xoffset=(hid->buffer[1])*MOUSE_SCALING;
if((emouse.x+xoffset)<480)
{
emouse.x+=xoffset;
}
else
{
emouse.x=480;
}
}
}
if(hid->buffer[2]!=0)
{
if(hid->buffer[2]>127)
{
yoffset=(256-hid->buffer[2])*MOUSE_SCALING;
if(emouse.y>yoffset)
{
emouse.y-=yoffset;
}
else
{
emouse.y=0;
}
}
else
{
yoffset=hid->buffer[2]*MOUSE_SCALING;
if(emouse.y+yoffset<272)
{
emouse.y+=yoffset;
}
else
{
emouse.y=272;
}
}
}
if(xoffset!=0||yoffset!=0)
{
cursor_set_position(emouse.x,emouse.y);
}
if(hid->buffer[0]&LKEY_PRESS)
{
if(lkey_down==RT_FALSE)
{
// rt_kprintf("mouse left key press down\n");
emouse.button = (RTGUI_MOUSE_BUTTON_LEFT | RTGUI_MOUSE_BUTTON_DOWN);
rtgui_server_post_event(&emouse.parent, sizeof(struct rtgui_event_mouse));
lkey_down=RT_TRUE;
}
}
else if(lkey_down==RT_TRUE)
{
// rt_kprintf("mouse left key press up\n");
emouse.button = (RTGUI_MOUSE_BUTTON_LEFT | RTGUI_MOUSE_BUTTON_UP);
rtgui_server_post_event(&emouse.parent, sizeof(struct rtgui_event_mouse));
lkey_down=RT_FALSE;
}
#endif
return RT_EOK;
}
static rt_thread_t mouse_thread;
static void mouse_task(void* param)
{
struct uhintf* intf = (struct uhintf*)param;
while (1)
{
if (rt_usb_hcd_pipe_xfer(intf->device->hcd, ((struct uhid*)intf->user_data)->pipe_in,
((struct uhid*)intf->user_data)->buffer, ((struct uhid*)intf->user_data)->pipe_in->ep.wMaxPacketSize,
USB_TIMEOUT_BASIC) == 0)
{
break;
}
rt_usbh_hid_mouse_callback(intf->user_data);
}
}
static rt_err_t rt_usbh_hid_mouse_init(void* arg)
{
struct uhintf* intf = (struct uhintf*)arg;
RT_ASSERT(intf != RT_NULL);
rt_usbh_hid_set_protocal(intf, 0);
rt_usbh_hid_set_idle(intf, 0, 0);
mouse_thread = rt_thread_create("mouse0", mouse_task, intf, 1024, 8, 100);
rt_thread_startup(mouse_thread);
RT_DEBUG_LOG(RT_DEBUG_USB, ("start usb mouse\n"));
#ifdef RT_USING_RTGUI
RTGUI_EVENT_MOUSE_BUTTON_INIT(&emouse);
emouse.wid = RT_NULL;
cursor_display(RT_TRUE);
#endif
return RT_EOK;
}
/**
* This function will define the hid mouse protocal, it will be register to the protocal list.
*
* @return the keyboard protocal structure.
*/
uprotocal_t rt_usbh_hid_protocal_mouse(void)
{
mouse_protocal.pro_id = USB_HID_MOUSE;
mouse_protocal.init = rt_usbh_hid_mouse_init;
mouse_protocal.callback = rt_usbh_hid_mouse_callback;
return &mouse_protocal;
}
#endif