2020 release

This commit is contained in:
Yanyan Jiang 2020-08-11 22:03:04 +08:00 committed by Zihao Yu
commit 61348e8b07
86 changed files with 5127 additions and 0 deletions

18
.gitignore vendored Normal file
View file

@ -0,0 +1,18 @@
*
!*/
!*.h
!*.c
!*.cc
!*.S
!*.ld
!*.sh
!*.py
!*.mk
!Makefile
!README
!LICENSE
.*
_*
*~
build/
!.gitignore

22
LICENSE Normal file
View file

@ -0,0 +1,22 @@
The AbstractMachine software is:
Copyright (c) 2018-2020 Yanyan Jiang and Zihao Yu
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

151
Makefile Normal file
View file

@ -0,0 +1,151 @@
# Makefile for AbstractMachine Kernels and Libraries
### *Get a more readable version of this Makefile* by `make html` (requires python-markdown)
html:
cat Makefile | sed 's/^\([^#]\)/ \1/g' | markdown_py > Makefile.html
.PHONY: html
## 1. Basic Setup and Checks
### Default to create a bare-metal kernel image
ifeq ($(MAKECMDGOALS),)
MAKECMDGOALS = image
.DEFAULT_GOAL = image
endif
### Override checks when `make clean/clean-all/html`
ifeq ($(findstring $(MAKECMDGOALS),clean|clean-all|html),)
### Print build info message
$(info # Building $(NAME)-$(MAKECMDGOALS) [$(ARCH)])
### Check: environment variable `$AM_HOME` looks sane
ifeq ($(wildcard $(AM_HOME)/am/include/am.h),)
$(error $$AM_HOME must be an AbstractMachine repo)
endif
### Check: environment variable `$ARCH` must be in the supported list
ARCHS = $(basename $(notdir $(shell ls $(AM_HOME)/scripts/*.mk)))
ifeq ($(filter $(ARCHS), $(ARCH)), )
$(error Expected $$ARCH in {$(ARCHS)}, Got "$(ARCH)")
endif
### Extract instruction set architecture (`ISA`) and platform from `$ARCH`. Example: `ARCH=x86_64-qemu -> ISA=x86_64; PLATFORM=qemu`
ARCH_SPLIT = $(subst -, ,$(ARCH))
ISA = $(word 1,$(ARCH_SPLIT))
PLATFORM = $(word 2,$(ARCH_SPLIT))
### Checks end here
endif
## 2. General Compilation Targets
### Create the destination directory (`build/$ARCH`)
WORK_DIR = $(shell pwd)
DST_DIR = $(WORK_DIR)/build/$(ARCH)
$(shell mkdir -p $(DST_DIR))
### Compilation targets (image or archive)
IMAGE_REL = build/$(NAME)-$(ARCH)
IMAGE = $(abspath $(IMAGE_REL))
ARCHIVE = $(WORK_DIR)/build/$(NAME)-$(ARCH).a
### Files to be linked: object files (`.o`) and libraries (`.a`)
OBJS = $(addprefix $(DST_DIR)/, $(addsuffix .o, $(basename $(SRCS))))
LIBS := $(sort $(LIBS) am klib) # lazy evaluation ("=") causes infinite recursions
LINKAGE = $(OBJS) \
$(addsuffix -$(ARCH).a, $(join \
$(addsuffix /build/, $(addprefix $(AM_HOME)/, $(LIBS))), \
$(LIBS) \
))
## 3. General Compilation Flags
### (Cross) compilers, e.g., mips-linux-gnu-g++
AS = $(CROSS_COMPILE)gcc
CC = $(CROSS_COMPILE)gcc
CXX = $(CROSS_COMPILE)g++
LD = $(CROSS_COMPILE)ld
OBJDUMP = $(CROSS_COMPILE)objdump
OBJCOPY = $(CROSS_COMPILE)objcopy
READELF = $(CROSS_COMPILE)readelf
### Compilation flags
INC_PATH += $(WORK_DIR)/include $(addsuffix /include/, $(addprefix $(AM_HOME)/, $(LIBS)))
INCFLAGS += $(addprefix -I, $(INC_PATH))
CFLAGS += -O2 -MMD -Wall -Werror -ggdb $(INCFLAGS) \
-D__ISA__=\"$(ISA)\" -D__ISA_$(shell echo $(ISA) | tr a-z A-Z)__ \
-D__ARCH__=$(ARCH) -D__ARCH_$(shell echo $(ARCH) | tr a-z A-Z | tr - _) \
-D__PLATFORM__=$(PLATFORM) -D__PLATFORM_$(shell echo $(PLATFORM) | tr a-z A-Z | tr - _) \
-DISA_H=\"$(ISA).h\" \
-DARCH_H=\"arch/$(ARCH).h\" \
-fno-asynchronous-unwind-tables -fno-builtin -fno-stack-protector \
-Wno-main
CXXFLAGS += $(CFLAGS) -ffreestanding -fno-rtti -fno-exceptions
ASFLAGS += -MMD $(INCFLAGS)
## 4. Arch-Specific Configurations
### Paste in arch-specific configurations (e.g., from `am/arch/x86_64-qemu.mk`)
-include $(AM_HOME)/scripts/$(ARCH).mk
## 5. Compilation Rules
### Rule (compile): a single `.c` -> `.o` (gcc)
$(DST_DIR)/%.o: %.c
@mkdir -p $(dir $@) && echo + CC $<
@$(CC) -std=gnu11 $(CFLAGS) -c -o $@ $(realpath $<)
### Rule (compile): a single `.cc` -> `.o` (g++)
$(DST_DIR)/%.o: %.cc
@mkdir -p $(dir $@) && echo + CXX $<
@$(CXX) -std=c++17 $(CXXFLAGS) -c -o $@ $(realpath $<)
### Rule (compile): a single `.cpp` -> `.o` (g++)
$(DST_DIR)/%.o: %.cpp
@mkdir -p $(dir $@) && echo + CXX $<
@$(CXX) -std=c++17 $(CXXFLAGS) -c -o $@ $(realpath $<)
### Rule (compile): a single `.S` -> `.o` (gcc, which calls as)
$(DST_DIR)/%.o: %.S
@mkdir -p $(dir $@) && echo + AS $<
@$(AS) $(ASFLAGS) -c -o $@ $(realpath $<)
### Rule (recursive make): build a dependent library (am, klib, ...)
$(LIBS): %:
@$(MAKE) -s -C $(AM_HOME)/$* archive
### Rule (link): objects (`*.o`) and libraries (`*.a`) -> `IMAGE.elf`, the final ELF binary to be packed into image (ld)
$(IMAGE).elf: $(OBJS) am $(LIBS)
@echo + LD "->" $(IMAGE_REL).elf
@$(LD) $(LDFLAGS) -o $(IMAGE).elf $(LINKAGE)
### Rule (archive): objects (`*.o`) -> `ARCHIVE.a` (ar)
$(ARCHIVE): $(OBJS)
@echo + AR "->" $(shell realpath $@ --relative-to .)
@ar rcs $(ARCHIVE) $(OBJS)
### Rule (`#include` dependencies): paste in `.d` files generated by gcc on `-MMD`
-include $(addprefix $(DST_DIR)/, $(addsuffix .d, $(basename $(SRCS))))
## 6. Miscellaneous
### Build order control
image: image-dep
archive: $(ARCHIVE)
image-dep: $(OBJS) am $(LIBS)
@echo \# Creating image [$(ARCH)]
.PHONY: image image-dep archive run $(LIBS)
### Clean a single project (remove `build/`)
clean:
rm -rf Makefile.html $(WORK_DIR)/build/
.PHONY: clean
### Clean all sub-projects within depth 2 (and ignore errors)
CLEAN_ALL = $(dir $(shell find . -mindepth 2 -name Makefile))
clean-all: $(CLEAN_ALL) clean
$(CLEAN_ALL):
-@$(MAKE) -s -C $@ clean
.PHONY: clean-all $(CLEAN_ALL)

13
README Normal file
View file

@ -0,0 +1,13 @@
AbstractMachine is a minimal, modularized, and machine-independent
abstraction layer of the computer hardware:
* physical memory and direct execution (The "Turing Machine");
* basic model for input and output devices (I/O Extension);
* interrupt/exception and processor context management (Context Extension);
* virtual memory and protection (Virtual Memory Extension);
* multiprocessing (Multiprocessing Extension).
CONTACTS
Bug reports and suggestions go to Yanyan Jiang (jyy@nju.edu.cn) and Zihao
Yu (yuzihao@ict.ac.cn).

5
am/Makefile Normal file
View file

@ -0,0 +1,5 @@
NAME := am
SRCS = $(addprefix src/, $(AM_SRCS))
INC_PATH += $(AM_HOME)/am/src
include $(AM_HOME)/Makefile

81
am/include/am.h Normal file
View file

@ -0,0 +1,81 @@
#ifndef AM_H__
#define AM_H__
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include ARCH_H // this macro is defined in $CFLAGS
// examples: "arch/x86-qemu.h", "arch/native.h", ...
// Memory protection flags
#define MMAP_NONE 0x00000000 // no access
#define MMAP_READ 0x00000001 // can read
#define MMAP_WRITE 0x00000002 // can write
// Memory area for [@start, @end)
typedef struct {
void *start, *end;
} Area;
// Arch-dependent processor context
typedef struct Context Context;
// An event of type @event, caused by @cause of pointer @ref
typedef struct {
enum {
EVENT_NULL = 0,
EVENT_YIELD, EVENT_SYSCALL, EVENT_PAGEFAULT, EVENT_ERROR,
EVENT_IRQ_TIMER, EVENT_IRQ_IODEV,
} event;
uintptr_t cause, ref;
const char *msg;
} Event;
// A protected address space with user memory @area
// and arch-dependent @ptr
typedef struct {
int pgsize;
Area area;
void *ptr;
} AddrSpace;
#ifdef __cplusplus
extern "C" {
#endif
// ----------------------- TRM: Turing Machine -----------------------
extern Area heap;
void putch (char ch);
void halt (int code) __attribute__((__noreturn__));
// -------------------- IOE: Input/Output Devices --------------------
bool ioe_init (void);
void ioe_read (int reg, void *buf);
void ioe_write (int reg, void *buf);
#include "amdev.h"
// ---------- CTE: Interrupt Handling and Context Switching ----------
bool cte_init (Context *(*handler)(Event ev, Context *ctx));
void yield (void);
bool ienabled (void);
void iset (bool enable);
Context *kcontext (Area kstack, void (*entry)(void *), void *arg);
// ----------------------- VME: Virtual Memory -----------------------
bool vme_init (void *(*pgalloc)(int), void (*pgfree)(void *));
void protect (AddrSpace *as);
void unprotect (AddrSpace *as);
void map (AddrSpace *as, void *vaddr, void *paddr, int prot);
Context *ucontext (AddrSpace *as, Area kstack, void *entry);
// ---------------------- MPE: Multi-Processing ----------------------
bool mpe_init (void (*entry)());
int cpu_count (void);
int cpu_current (void);
int atomic_xchg (int *addr, int newval);
#ifdef __cplusplus
}
#endif
#endif

69
am/include/amdev.h Normal file
View file

@ -0,0 +1,69 @@
// **MAY SUBJECT TO CHANGE IN THE FUTURE**
#define AM_DEVREG(id, reg, perm, ...) \
enum { AM_##reg = (id) }; \
typedef struct { __VA_ARGS__; } AM_##reg##_T;
AM_DEVREG( 1, UART_CONFIG, RD, bool present);
AM_DEVREG( 2, UART_TX, WR, char data);
AM_DEVREG( 3, UART_RX, RD, char data);
AM_DEVREG( 4, TIMER_CONFIG, RD, bool present, has_rtc);
AM_DEVREG( 5, TIMER_RTC, RD, int year, month, day, hour, minute, second);
AM_DEVREG( 6, TIMER_UPTIME, RD, uint64_t us);
AM_DEVREG( 7, INPUT_CONFIG, RD, bool present);
AM_DEVREG( 8, INPUT_KEYBRD, RD, bool keydown; int keycode);
AM_DEVREG( 9, GPU_CONFIG, RD, bool present, has_accel; int width, height, vmemsz);
AM_DEVREG(10, GPU_STATUS, RD, bool ready);
AM_DEVREG(11, GPU_FBDRAW, WR, int x, y; void *pixels; int w, h; bool sync);
AM_DEVREG(12, GPU_MEMCPY, WR, uint32_t dest; void *src; int size);
AM_DEVREG(13, GPU_RENDER, WR, uint32_t root);
AM_DEVREG(14, AUDIO_CONFIG, RD, bool present);
AM_DEVREG(15, AUDIO_CTRL, WR, int freq, channels, samples, bufsize);
AM_DEVREG(16, AUDIO_STATUS, RD, int count);
AM_DEVREG(17, AUDIO_PLAY, WR, Area buf);
AM_DEVREG(18, DISK_CONFIG, RD, bool present; int blksz, blkcnt);
AM_DEVREG(19, DISK_STATUS, RD, bool ready);
AM_DEVREG(20, DISK_BLKIO, WR, bool write; void *buf; int blkno, blkcnt);
AM_DEVREG(21, NET_CONFIG, RD, bool present);
AM_DEVREG(22, NET_STATUS, RD, int rx_len, tx_len);
AM_DEVREG(23, NET_TX, WR, Area buf);
AM_DEVREG(24, NET_RX, WR, Area buf);
// Input
#define AM_KEYS(_) \
_(ESCAPE) _(F1) _(F2) _(F3) _(F4) _(F5) _(F6) _(F7) _(F8) _(F9) _(F10) _(F11) _(F12) \
_(GRAVE) _(1) _(2) _(3) _(4) _(5) _(6) _(7) _(8) _(9) _(0) _(MINUS) _(EQUALS) _(BACKSPACE) \
_(TAB) _(Q) _(W) _(E) _(R) _(T) _(Y) _(U) _(I) _(O) _(P) _(LEFTBRACKET) _(RIGHTBRACKET) _(BACKSLASH) \
_(CAPSLOCK) _(A) _(S) _(D) _(F) _(G) _(H) _(J) _(K) _(L) _(SEMICOLON) _(APOSTROPHE) _(RETURN) \
_(LSHIFT) _(Z) _(X) _(C) _(V) _(B) _(N) _(M) _(COMMA) _(PERIOD) _(SLASH) _(RSHIFT) \
_(LCTRL) _(APPLICATION) _(LALT) _(SPACE) _(RALT) _(RCTRL) \
_(UP) _(DOWN) _(LEFT) _(RIGHT) _(INSERT) _(DELETE) _(HOME) _(END) _(PAGEUP) _(PAGEDOWN)
#define AM_KEY_NAMES(key) AM_KEY_##key,
enum {
AM_KEY_NONE = 0,
AM_KEYS(AM_KEY_NAMES)
};
// GPU
#define AM_GPU_TEXTURE 1
#define AM_GPU_SUBTREE 2
#define AM_GPU_NULL 0xffffffff
typedef uint32_t gpuptr_t;
struct gpu_texturedesc {
uint16_t w, h;
gpuptr_t pixels;
} __attribute__((packed));
struct gpu_canvas {
uint16_t type, w, h, x1, y1, w1, h1;
gpuptr_t sibling;
union {
gpuptr_t child;
struct gpu_texturedesc texture;
};
} __attribute__((packed));

View file

@ -0,0 +1,15 @@
#ifndef __ARCH_H__
#define __ARCH_H__
struct Context {
uintptr_t hi, gpr[32], epc, cause, lo, status;
void *pdir;
};
#define GPR1 gpr[2] // v0
#define GPR2 gpr[0]
#define GPR3 gpr[0]
#define GPR4 gpr[0]
#define GPRx gpr[0]
#endif

26
am/include/arch/native.h Normal file
View file

@ -0,0 +1,26 @@
#ifndef ARCH_H__
#define ARCH_H__
#ifndef __USE_GNU
# define __USE_GNU
#endif
#include <ucontext.h>
struct Context {
uintptr_t ksp;
void *vm_head;
ucontext_t uc;
// skip the red zone of the stack frame, see the amd64 ABI manual for details
uint8_t redzone[128];
};
#define GPR1 uc.uc_mcontext.gregs[REG_RDI]
#define GPR2 uc.uc_mcontext.gregs[REG_RSI]
#define GPR3 uc.uc_mcontext.gregs[REG_RDX]
#define GPR4 uc.uc_mcontext.gregs[REG_RCX]
#define GPRx uc.uc_mcontext.gregs[REG_RAX]
#undef __USE_GNU
#endif

View file

@ -0,0 +1,15 @@
#ifndef ARCH_H__
#define ARCH_H__
struct Context {
uintptr_t epc, cause, gpr[32], status;
void *pdir;
};
#define GPR1 gpr[17] // a7
#define GPR2 gpr[0]
#define GPR3 gpr[0]
#define GPR4 gpr[0]
#define GPRx gpr[0]
#endif

View file

@ -0,0 +1,16 @@
#ifndef ARCH_H__
#define ARCH_H__
struct Context {
uintptr_t esi, ebx, eax, eip, edx, eflags, ecx, cs, esp, edi, ebp;
void *cr3;
int irq;
};
#define GPR1 eax
#define GPR2 eip
#define GPR3 eip
#define GPR4 eip
#define GPRx eip
#endif

View file

@ -0,0 +1,17 @@
#ifndef ARCH_H__
#define ARCH_H__
struct Context {
void *cr3;
uint32_t ds, eax, ebx, ecx, edx,
esp0, esi, edi, ebp,
eip, cs, eflags, esp, ss3;
};
#define GPR1 eax
#define GPR2 ebx
#define GPR3 ecx
#define GPR4 edx
#define GPRx eax
#endif

View file

@ -0,0 +1,21 @@
#ifndef ARCH_H__
#define ARCH_H__
struct Context {
void *cr3;
uint64_t rax, rbx, rcx, rdx,
rbp, rsi, rdi,
r8, r9, r10, r11,
r12, r13, r14, r15,
rip, cs, rflags,
rsp, ss, rsp0;
};
#define GPR1 rdi
#define GPR2 rsi
#define GPR3 rdx
#define GPR4 rcx
#define GPRx rax
#endif

24
am/src/mips32.h Normal file
View file

@ -0,0 +1,24 @@
#ifndef MIPS32_H__
#define MIPS32_H__
#include <stdint.h>
static inline uint8_t inb(uintptr_t addr) { return *(volatile uint8_t *)addr; }
static inline uint16_t inw(uintptr_t addr) { return *(volatile uint16_t *)addr; }
static inline uint32_t inl(uintptr_t addr) { return *(volatile uint32_t *)addr; }
static inline void outb(uintptr_t addr, uint8_t data) { *(volatile uint8_t *)addr = data; }
static inline void outw(uintptr_t addr, uint16_t data) { *(volatile uint16_t *)addr = data; }
static inline void outl(uintptr_t addr, uint32_t data) { *(volatile uint32_t *)addr = data; }
#define PTE_V 0x2
#define PTE_D 0x4
// Page directory and page table constants
#define PTXSHFT 12 // Offset of PTX in a linear address
#define PDXSHFT 22 // Offset of PDX in a linear address
#define PDX(va) (((uint32_t)(va) >> PDXSHFT) & 0x3ff)
#define PTX(va) (((uint32_t)(va) >> PTXSHFT) & 0x3ff)
#endif

196
am/src/native/cte.c Normal file
View file

@ -0,0 +1,196 @@
#include <sys/time.h>
#include "platform.h"
#define TIMER_HZ 100
#define YIELD_INSTR "0xff,0x14,0x25,0x08,0x00,0x10,0x00" // callq *0x100008
#define YIELD_INSTR_LEN ((sizeof(YIELD_INSTR)) / 5) // sizeof() counts the '\0' byte
#define SYSCALL_INSTR_LEN YIELD_INSTR_LEN
static_assert(SYSCALL_INSTR_LEN == 7);
static Context* (*user_handler)(Event, Context*) = NULL;
void __am_kcontext_start();
void __am_switch(Context *c);
int __am_in_userspace(void *addr);
void __am_pmem_protect();
void __am_pmem_unprotect();
void __am_panic_on_return() { panic("should not reach here\n"); }
static void irq_handle(Context *c) {
c->vm_head = thiscpu->vm_head;
c->ksp = thiscpu->ksp;
c = user_handler(thiscpu->ev, c);
assert(c != NULL);
__am_switch(c);
// magic call to restore context
asm volatile("call *0x100010" : : "a" (c));
__am_panic_on_return();
}
static void setup_stack(uintptr_t event, ucontext_t *uc) {
void *rip = (void *)uc->uc_mcontext.gregs[REG_RIP];
extern uint8_t _start, _etext;
int trap_from_user = __am_in_userspace(rip);
int signal_safe = IN_RANGE(rip, RANGE(&_start, &_etext)) || trap_from_user ||
// Hack here: "+13" points to the instruction after syscall. This is the
// instruction which will trigger the pending signal if interrupt is enabled.
(rip == (void *)&sigprocmask + 13);
if (((event == EVENT_IRQ_IODEV) || (event == EVENT_IRQ_TIMER)) && !signal_safe) {
// Shared libraries contain code which are not reenterable.
// If the signal comes when executing code in shared libraries,
// the signal handler can not call any function which is not signal-safe,
// else the behavior is undefined (may be dead lock).
// To handle this, we just refuse to handle the signal and return directly
// to pretend missing the interrupt.
// See man 7 signal-safety for more information.
return;
}
if (trap_from_user) __am_pmem_unprotect();
// skip the instructions causing SIGSEGV for syscall and yield
if (event == EVENT_SYSCALL) { rip += SYSCALL_INSTR_LEN; }
else if (event == EVENT_YIELD) { rip += YIELD_INSTR_LEN; }
uc->uc_mcontext.gregs[REG_RIP] = (uintptr_t)rip;
// switch to kernel stack if we were previously in user space
uintptr_t rsp = trap_from_user ? thiscpu->ksp : uc->uc_mcontext.gregs[REG_RSP];
rsp -= sizeof(Context);
// keep (rsp + 8) % 16 == 0 to support SSE
if ((rsp + 8) % 16 != 0) rsp -= 8;
Context *c = (void *)rsp;
// save the context on the stack
c->uc = *uc;
// disable interrupt
__am_get_intr_sigmask(&uc->uc_sigmask);
// call irq_handle after returning from the signal handler
uc->uc_mcontext.gregs[REG_RDI] = (uintptr_t)c;
uc->uc_mcontext.gregs[REG_RIP] = (uintptr_t)irq_handle;
uc->uc_mcontext.gregs[REG_RSP] = (uintptr_t)c;
}
static void iret(ucontext_t *uc) {
Context *c = (void *)uc->uc_mcontext.gregs[REG_RAX];
// restore the context
*uc = c->uc;
thiscpu->ksp = c->ksp;
if (__am_in_userspace((void *)uc->uc_mcontext.gregs[REG_RIP])) __am_pmem_protect();
}
static void sig_handler(int sig, siginfo_t *info, void *ucontext) {
thiscpu->ev = (Event) {0};
thiscpu->ev.event = EVENT_ERROR;
switch (sig) {
case SIGUSR1: thiscpu->ev.event = EVENT_IRQ_IODEV; break;
case SIGVTALRM: thiscpu->ev.event = EVENT_IRQ_TIMER; break;
case SIGSEGV:
if (info->si_code == SEGV_ACCERR) {
switch ((uintptr_t)info->si_addr) {
case 0x100000: thiscpu->ev.event = EVENT_SYSCALL; break;
case 0x100008: thiscpu->ev.event = EVENT_YIELD; break;
case 0x100010: iret(ucontext); return;
}
}
if (__am_in_userspace(info->si_addr)) {
assert(thiscpu->ev.event == EVENT_ERROR);
thiscpu->ev.event = EVENT_PAGEFAULT;
switch (info->si_code) {
case SEGV_MAPERR: thiscpu->ev.cause = MMAP_READ; break;
// we do not support mapped user pages with MMAP_NONE
case SEGV_ACCERR: thiscpu->ev.cause = MMAP_WRITE; break;
default: assert(0);
}
thiscpu->ev.ref = (uintptr_t)info->si_addr;
}
if (thiscpu->ev.event == EVENT_ERROR) {
uintptr_t rip = ((ucontext_t *)ucontext)->uc_mcontext.gregs[REG_RIP];
printf("Unhandle SIGSEGV at rip = %p, badaddr = %p\n", rip, info->si_addr);
}
break;
default: assert(0);
}
assert(thiscpu->ev.event != EVENT_ERROR);
setup_stack(thiscpu->ev.event, ucontext);
}
// signal handlers are inherited across fork()
static void install_signal_handler() {
struct sigaction s;
memset(&s, 0, sizeof(s));
s.sa_sigaction = sig_handler;
s.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
__am_get_intr_sigmask(&s.sa_mask);
int ret = sigaction(SIGVTALRM, &s, NULL);
assert(ret == 0);
ret = sigaction(SIGUSR1, &s, NULL);
assert(ret == 0);
ret = sigaction(SIGSEGV, &s, NULL);
assert(ret == 0);
}
// setitimer() are inherited across fork(), should be called again from children
void __am_init_timer_irq() {
iset(0);
struct itimerval it = {};
it.it_value.tv_sec = 0;
it.it_value.tv_usec = 1000000 / TIMER_HZ;
it.it_interval = it.it_value;
int ret = setitimer(ITIMER_VIRTUAL, &it, NULL);
assert(ret == 0);
}
bool cte_init(Context*(*handler)(Event, Context*)) {
user_handler = handler;
install_signal_handler();
__am_init_timer_irq();
return true;
}
Context* kcontext(Area kstack, void (*entry)(void *), void *arg) {
Context *c = (Context*)kstack.end - 1;
__am_get_example_uc(c);
c->uc.uc_mcontext.gregs[REG_RIP] = (uintptr_t)__am_kcontext_start;
c->uc.uc_mcontext.gregs[REG_RSP] = (uintptr_t)kstack.end;
int ret = sigemptyset(&(c->uc.uc_sigmask)); // enable interrupt
assert(ret == 0);
c->vm_head = NULL;
c->GPR1 = (uintptr_t)arg;
c->GPR2 = (uintptr_t)entry;
return c;
}
void yield() {
asm volatile (".byte " YIELD_INSTR);
}
bool ienabled() {
sigset_t set;
int ret = sigprocmask(0, NULL, &set);
assert(ret == 0);
return __am_is_sigmask_sti(&set);
}
void iset(bool enable) {
extern sigset_t __am_intr_sigmask;
// NOTE: sigprocmask does not supported in multithreading
int ret = sigprocmask(enable ? SIG_UNBLOCK : SIG_BLOCK, &__am_intr_sigmask, NULL);
assert(ret == 0);
}

71
am/src/native/ioe.c Normal file
View file

@ -0,0 +1,71 @@
#include <am.h>
#include <klib-macros.h>
bool __am_has_ioe = false;
static bool ioe_init_done = false;
void __am_timer_init();
void __am_gpu_init();
void __am_input_init();
void __am_input_config(AM_INPUT_CONFIG_T *);
void __am_timer_config(AM_TIMER_CONFIG_T *);
void __am_timer_rtc(AM_TIMER_RTC_T *);
void __am_timer_uptime(AM_TIMER_UPTIME_T *);
void __am_input_keybrd(AM_INPUT_KEYBRD_T *);
void __am_gpu_config(AM_GPU_CONFIG_T *);
void __am_gpu_status(AM_GPU_STATUS_T *);
void __am_gpu_fbdraw(AM_GPU_FBDRAW_T *);
void __am_audio_ctrl(AM_AUDIO_CTRL_T *);
void __am_audio_status(AM_AUDIO_STATUS_T *);
void __am_audio_play(AM_AUDIO_PLAY_T *);
static void __am_uart_config(AM_UART_CONFIG_T *cfg) { cfg->present = false; }
static void __am_audio_config(AM_AUDIO_CONFIG_T *cfg) { cfg->present = true; }
static void __am_disk_config(AM_DISK_CONFIG_T *cfg) { cfg->present = false; }
static void __am_net_config (AM_NET_CONFIG_T *cfg) { cfg->present = false; }
typedef void (*handler_t)(void *buf);
static void *lut[128] = {
[AM_TIMER_CONFIG] = __am_timer_config,
[AM_TIMER_RTC ] = __am_timer_rtc,
[AM_TIMER_UPTIME] = __am_timer_uptime,
[AM_INPUT_CONFIG] = __am_input_config,
[AM_INPUT_KEYBRD] = __am_input_keybrd,
[AM_GPU_CONFIG ] = __am_gpu_config,
[AM_GPU_FBDRAW ] = __am_gpu_fbdraw,
[AM_GPU_STATUS ] = __am_gpu_status,
[AM_UART_CONFIG ] = __am_uart_config,
[AM_AUDIO_CONFIG] = __am_audio_config,
[AM_AUDIO_CTRL ] = __am_audio_ctrl,
[AM_AUDIO_STATUS] = __am_audio_status,
[AM_AUDIO_PLAY ] = __am_audio_play,
[AM_DISK_CONFIG ] = __am_disk_config,
[AM_NET_CONFIG ] = __am_net_config,
};
bool ioe_init() {
panic_on(cpu_current() != 0, "call ioe_init() in other CPUs");
panic_on(ioe_init_done, "double-initialization");
__am_has_ioe = true;
return true;
}
static void fail(void *buf) { panic("access nonexist register"); }
void __am_ioe_init() {
for (int i = 0; i < LENGTH(lut); i++)
if (!lut[i]) lut[i] = fail;
__am_timer_init();
__am_gpu_init();
__am_input_init();
ioe_init_done = true;
}
static void do_io(int reg, void *buf) {
if (!ioe_init_done) {
__am_ioe_init();
}
((handler_t)lut[reg])(buf);
}
void ioe_read (int reg, void *buf) { do_io(reg, buf); }
void ioe_write(int reg, void *buf) { do_io(reg, buf); }

51
am/src/native/mpe.c Normal file
View file

@ -0,0 +1,51 @@
#include <stdatomic.h>
#include "platform.h"
int __am_mpe_init = 0;
extern bool __am_has_ioe;
void __am_ioe_init();
bool mpe_init(void (*entry)()) {
__am_mpe_init = 1;
int sync_pipe[2];
assert(0 == pipe(sync_pipe));
for (int i = 1; i < cpu_count(); i++) {
if (fork() == 0) {
char ch;
assert(read(sync_pipe[0], &ch, 1) == 1);
assert(ch == '+');
close(sync_pipe[0]); close(sync_pipe[1]);
thiscpu->cpuid = i;
__am_init_timer_irq();
entry();
}
}
if (__am_has_ioe) {
__am_ioe_init();
}
for (int i = 1; i < cpu_count(); i++) {
assert(write(sync_pipe[1], "+", 1) == 1);
}
close(sync_pipe[0]); close(sync_pipe[1]);
entry();
panic("MP entry should not return\n");
}
int cpu_count() {
extern int __am_ncpu;
return __am_ncpu;
}
int cpu_current() {
return thiscpu->cpuid;
}
int atomic_xchg(int *addr, int newval) {
return atomic_exchange((int *)addr, newval);
}

View file

@ -0,0 +1,74 @@
#include <klib.h>
#include <SDL2/SDL.h>
#define SBUF_SIZE_MAX 65536
static uint8_t sbuf [SBUF_SIZE_MAX] = {};
static int sbuf_size = 0;
static int head = 0, tail = 0;
static volatile int count = 0;
static void audio_play(void *userdata, uint8_t *stream, int len) {
int nread = len;
if (count < len) nread = count;
if (nread + tail < sbuf_size) {
memcpy(stream, sbuf + tail, nread);
tail += nread;
} else {
int first_cpy_len = sbuf_size - tail;
memcpy(stream, sbuf + tail, first_cpy_len);
memcpy(stream + first_cpy_len, sbuf, nread - first_cpy_len);
tail = nread - first_cpy_len;
}
count -= nread;
if (len > nread) memset(stream + nread, 0, len - nread);
}
static int audio_write(uint8_t *buf, int len) {
int free = sbuf_size - count;
int nwrite = len;
if (free < len) nwrite = free;
if (nwrite + head < sbuf_size) {
memcpy(sbuf + head, buf, nwrite);
head += nwrite;
} else {
int first_cpy_len = sbuf_size - head;
memcpy(sbuf + head, buf, first_cpy_len);
memcpy(sbuf, buf + first_cpy_len, nwrite - first_cpy_len);
head = nwrite - first_cpy_len;
}
count += nwrite;
return nwrite;
}
void __am_audio_ctrl(AM_AUDIO_CTRL_T *ctrl) {
SDL_AudioSpec s = {};
s.freq = ctrl->freq;
s.format = AUDIO_S16SYS;
s.channels = ctrl->channels;
s.samples = ctrl->samples;
s.callback = audio_play;
s.userdata = NULL;
sbuf_size = ctrl->bufsize;
assert(sbuf_size <= SBUF_SIZE_MAX);
head = tail = 0;
count = 0;
int ret = SDL_InitSubSystem(SDL_INIT_AUDIO);
if (ret == 0) {
SDL_OpenAudio(&s, NULL);
SDL_PauseAudio(0);
}
}
void __am_audio_status(AM_AUDIO_STATUS_T *stat) {
stat->count = count;
}
void __am_audio_play(AM_AUDIO_PLAY_T *ctl) {
int len = ctl->buf.end - ctl->buf.start;
assert(len <= sbuf_size);
while (sbuf_size - count < len);
audio_write(ctl->buf.start, len);
}

View file

@ -0,0 +1,54 @@
#include <am.h>
#include <SDL2/SDL.h>
#define W 400
#define H 300
#define FPS 60
static SDL_Window *window = NULL;
static SDL_Renderer *renderer = NULL;
static SDL_Texture *texture = NULL;
static uint32_t fb[W * H] = {};
static inline int min(int x, int y) { return (x < y) ? x : y; }
static Uint32 texture_sync(Uint32 interval, void *param) {
SDL_UpdateTexture(texture, NULL, fb, W * sizeof(Uint32));
SDL_RenderClear(renderer);
SDL_RenderCopy(renderer, texture, NULL, NULL);
SDL_RenderPresent(renderer);
return interval;
}
void __am_gpu_init() {
SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER);
SDL_CreateWindowAndRenderer(W * 2, H * 2, 0, &window, &renderer);
SDL_SetWindowTitle(window, "Native Application");
texture = SDL_CreateTexture(renderer,
SDL_PIXELFORMAT_ARGB8888, SDL_TEXTUREACCESS_STATIC, W, H);
memset(fb, 0, W * H * sizeof(uint32_t));
SDL_AddTimer(1000 / FPS, texture_sync, NULL);
}
void __am_gpu_config(AM_GPU_CONFIG_T *cfg) {
*cfg = (AM_GPU_CONFIG_T) {
.present = true, .has_accel = false,
.width = W, .height = H,
.vmemsz = 0
};
}
void __am_gpu_status(AM_GPU_STATUS_T *stat) {
stat->ready = true;
}
void __am_gpu_fbdraw(AM_GPU_FBDRAW_T *ctl) {
int x = ctl->x, y = ctl->y, w = ctl->w, h = ctl->h;
uint32_t *pixels = ctl->pixels;
int cp_bytes = sizeof(uint32_t) * min(w, W - x);
for (int j = 0; j < h && y + j < H; j ++) {
memcpy(&fb[(y + j) * W + x], pixels, cp_bytes);
pixels += w;
}
}

View file

@ -0,0 +1,63 @@
#include <am.h>
#include <SDL2/SDL.h>
#include "platform.h"
#define KEYDOWN_MASK 0x8000
#define KEY_QUEUE_LEN 1024
static int key_queue[KEY_QUEUE_LEN] = {};
static int key_f = 0, key_r = 0;
static SDL_mutex *key_queue_lock = NULL;
#define XX(k) [SDL_SCANCODE_##k] = AM_KEY_##k,
static int keymap[256] = {
AM_KEYS(XX)
};
static int event_thread(void *args) {
SDL_Event event;
while (1) {
SDL_WaitEvent(&event);
switch (event.type) {
case SDL_QUIT: halt(0);
case SDL_KEYDOWN:
case SDL_KEYUP: {
SDL_Keysym k = event.key.keysym;
int keydown = event.key.type == SDL_KEYDOWN;
int scancode = k.scancode;
if (keymap[scancode] != 0) {
int am_code = keymap[scancode] | (keydown ? KEYDOWN_MASK : 0);
SDL_LockMutex(key_queue_lock);
key_queue[key_r] = am_code;
key_r = (key_r + 1) % KEY_QUEUE_LEN;
SDL_UnlockMutex(key_queue_lock);
kill(getpid(), SIGUSR1);
}
break;
}
}
}
}
void __am_input_init() {
key_queue_lock = SDL_CreateMutex();
SDL_CreateThread(event_thread, "event thread", NULL);
}
void __am_input_config(AM_INPUT_CONFIG_T *cfg) {
cfg->present = true;
}
void __am_input_keybrd(AM_INPUT_KEYBRD_T *kbd) {
int k = AM_KEY_NONE;
SDL_LockMutex(key_queue_lock);
if (key_f != key_r) {
k = key_queue[key_f];
key_f = (key_f + 1) % KEY_QUEUE_LEN;
}
SDL_UnlockMutex(key_queue_lock);
kbd->keydown = (k & KEYDOWN_MASK ? true : false);
kbd->keycode = k & ~KEYDOWN_MASK;
}

View file

@ -0,0 +1,33 @@
#include <am.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
static struct timeval boot_time = {};
void __am_timer_config(AM_TIMER_CONFIG_T *cfg) {
cfg->present = cfg->has_rtc = true;
}
void __am_timer_rtc(AM_TIMER_RTC_T *rtc) {
time_t t = time(NULL);
struct tm *tm = localtime(&t);
rtc->second = tm->tm_sec;
rtc->minute = tm->tm_min;
rtc->hour = tm->tm_hour;
rtc->day = tm->tm_mday;
rtc->month = tm->tm_mon + 1;
rtc->year = tm->tm_year + 1900;
}
void __am_timer_uptime(AM_TIMER_UPTIME_T *uptime) {
struct timeval now;
gettimeofday(&now, NULL);
long seconds = now.tv_sec - boot_time.tv_sec;
long useconds = now.tv_usec - boot_time.tv_usec;
uptime->us = seconds * 1000000 + (useconds + 500);
}
void __am_timer_init() {
gettimeofday(&boot_time, NULL);
}

212
am/src/native/platform.c Normal file
View file

@ -0,0 +1,212 @@
#define _GNU_SOURCE
#include <sys/mman.h>
#include <sys/auxv.h>
#include <elf.h>
#include <stdlib.h>
#include <stdio.h>
#include "platform.h"
#define MAX_CPU 16
#define TRAP_PAGE_START (void *)0x100000
#define PMEM_START (void *)0x3000000 // for nanos-lite with vme disabled
#define PMEM_SIZE (128 * 1024 * 1024)
static int pmem_fd = 0;
static void *pmem = NULL;
static ucontext_t uc_example = {};
static int sys_pgsz;
sigset_t __am_intr_sigmask = {};
__am_cpu_t *__am_cpu_struct = NULL;
int __am_ncpu = 0;
int __am_pgsize;
static void save_context_handler(int sig, siginfo_t *info, void *ucontext) {
memcpy(&uc_example, ucontext, sizeof(uc_example));
}
static void save_example_context() {
// getcontext() does not save segment registers. In the signal
// handler, restoring a context previously saved by getcontext()
// will trigger segmentation fault because of the invalid segment
// registers. So we save the example context during signal handling
// to get a context with everything valid.
struct sigaction s;
memset(&s, 0, sizeof(s));
s.sa_sigaction = save_context_handler;
s.sa_flags = SA_SIGINFO;
int ret = sigaction(SIGUSR1, &s, NULL);
assert(ret == 0);
raise(SIGUSR1);
s.sa_flags = 0;
s.sa_handler = SIG_DFL;
ret = sigaction(SIGUSR1, &s, NULL);
assert(ret == 0);
}
static void setup_sigaltstack() {
stack_t ss;
ss.ss_sp = thiscpu->sigstack;
ss.ss_size = sizeof(thiscpu->sigstack);
ss.ss_flags = 0;
int ret = sigaltstack(&ss, NULL);
assert(ret == 0);
}
int main(const char *args);
static void init_platform() __attribute__((constructor));
static void init_platform() {
// create memory object and set up mapping to simulate the physical memory
pmem_fd = memfd_create("pmem", 0);
assert(pmem_fd != -1);
assert(0 == ftruncate(pmem_fd, PMEM_SIZE));
pmem = mmap(PMEM_START, PMEM_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_SHARED | MAP_FIXED, pmem_fd, 0);
assert(pmem != (void *)-1);
// allocate private per-cpu structure
thiscpu = mmap(NULL, sizeof(*thiscpu), PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
assert(thiscpu != (void *)-1);
thiscpu->cpuid = 0;
thiscpu->vm_head = NULL;
// create trap page to receive syscall and yield by SIGSEGV
sys_pgsz = sysconf(_SC_PAGESIZE);
void *ret = mmap(TRAP_PAGE_START, sys_pgsz, PROT_NONE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
assert(ret != (void *)-1);
// remap writable sections as MAP_SHARED
Elf64_Phdr *phdr = (void *)getauxval(AT_PHDR);
int phnum = (int)getauxval(AT_PHNUM);
int i;
int ret2;
for (i = 0; i < phnum; i ++) {
if (phdr[i].p_type == PT_LOAD && (phdr[i].p_flags & PF_W)) {
// allocate temporary memory
extern char end;
void *vaddr = (void *)&end - phdr[i].p_memsz;
uintptr_t pad = (uintptr_t)vaddr & 0xfff;
void *vaddr_align = vaddr - pad;
uintptr_t size = phdr[i].p_memsz + pad;
void *temp_mem = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
assert(temp_mem != (void *)-1);
// save data and bss sections
memcpy(temp_mem, vaddr_align, size);
// save the addresses of library functions which will be used after munamp()
// since calling the library functions requires accessing GOT, which will be unmapped
void *(*volatile mmap_libc)(void *, size_t, int, int, int, off_t) = &mmap;
void *(*volatile memcpy_libc)(void *, const void *, size_t) = &memcpy;
// unmap the data and bss sections
ret2 = munmap(vaddr_align, size);
assert(ret2 == 0);
// map the sections again with MAP_SHARED, which will be shared across fork()
ret = mmap_libc(vaddr_align, size, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_SHARED | MAP_FIXED | MAP_ANONYMOUS, -1, 0);
assert(ret == vaddr_align);
// restore the data in the sections
memcpy_libc(vaddr_align, temp_mem, size);
// unmap the temporary memory
ret2 = munmap(temp_mem, size);
assert(ret2 == 0);
}
}
// set up the AM heap
heap = RANGE(pmem, pmem + PMEM_SIZE);
// initialize sigmask for interrupts
ret2 = sigemptyset(&__am_intr_sigmask);
assert(ret2 == 0);
ret2 = sigaddset(&__am_intr_sigmask, SIGVTALRM);
assert(ret2 == 0);
ret2 = sigaddset(&__am_intr_sigmask, SIGUSR1);
assert(ret2 == 0);
// setup alternative signal stack
setup_sigaltstack();
// save the context template
save_example_context();
__am_get_intr_sigmask(&uc_example.uc_sigmask);
// disable interrupts by default
iset(0);
// set ncpu
const char *smp = getenv("smp");
__am_ncpu = smp ? atoi(smp) : 1;
assert(0 < __am_ncpu && __am_ncpu <= MAX_CPU);
// set pgsize
const char *pgsize = getenv("pgsize");
__am_pgsize = pgsize ? atoi(pgsize) : sys_pgsz;
assert(__am_pgsize > 0 && __am_pgsize % sys_pgsz == 0);
// set stdout unbuffered
setbuf(stdout, NULL);
const char *args = getenv("mainargs");
halt(main(args ? args : "")); // call main here!
}
void __am_exit_platform(int code) {
// let Linux clean up other resource
extern int __am_mpe_init;
if (__am_mpe_init && cpu_count() > 1) kill(0, SIGKILL);
exit(code);
}
void __am_pmem_map(void *va, void *pa, int prot) {
// translate AM prot to mmap prot
int mmap_prot = PROT_NONE;
// we do not support executable bit, so mark
// all readable pages executable as well
if (prot & MMAP_READ) mmap_prot |= PROT_READ | PROT_EXEC;
if (prot & MMAP_WRITE) mmap_prot |= PROT_WRITE;
void *ret = mmap(va, __am_pgsize, mmap_prot,
MAP_SHARED | MAP_FIXED, pmem_fd, (uintptr_t)(pa - pmem));
assert(ret != (void *)-1);
}
void __am_pmem_unmap(void *va) {
int ret = munmap(va, __am_pgsize);
assert(ret == 0);
}
void __am_get_example_uc(Context *r) {
memcpy(&r->uc, &uc_example, sizeof(uc_example));
}
void __am_get_intr_sigmask(sigset_t *s) {
memcpy(s, &__am_intr_sigmask, sizeof(__am_intr_sigmask));
}
int __am_is_sigmask_sti(sigset_t *s) {
return !sigismember(s, SIGVTALRM);
}
void __am_pmem_protect() {
int ret = mprotect(PMEM_START, PMEM_SIZE, PROT_NONE);
assert(ret == 0);
}
void __am_pmem_unprotect() {
int ret = mprotect(PMEM_START, PMEM_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC);
assert(ret == 0);
}
// This dummy function will be called in trm.c.
// The purpose of this dummy function is to let linker add this file to the object
// file set. Without it, the constructor of @_init_platform will not be linked.
void __am_platform_dummy() {
}

28
am/src/native/platform.h Normal file
View file

@ -0,0 +1,28 @@
#ifndef __PLATFORM_H__
#define __PLATFORM_H__
#include <am.h>
#include <unistd.h>
#include <signal.h>
#include <klib.h>
#include <klib-macros.h>
void __am_get_example_uc(Context *r);
void __am_get_intr_sigmask(sigset_t *s);
int __am_is_sigmask_sti(sigset_t *s);
void __am_init_timer_irq();
void __am_pmem_map(void *va, void *pa, int prot);
void __am_pmem_unmap(void *va);
// per-cpu structure
typedef struct {
void *vm_head;
uintptr_t ksp;
int cpuid;
Event ev; // similar to cause register in mips/riscv
uint8_t sigstack[SIGSTKSZ];
} __am_cpu_t;
extern __am_cpu_t *__am_cpu_struct;
#define thiscpu __am_cpu_struct
#endif

10
am/src/native/trap.S Normal file
View file

@ -0,0 +1,10 @@
.global __am_kcontext_start
__am_kcontext_start:
// rdi = arg, rsi = entry
// (rsp + 8) should be multiple of 16 when
// control is transfered to the function entry point.
// See amd64 ABI manual for more details
andq $0xfffffffffffffff0, %rsp
call *%rsi
call __am_panic_on_return

22
am/src/native/trm.c Normal file
View file

@ -0,0 +1,22 @@
#include <am.h>
#include <stdio.h>
void __am_platform_dummy();
void __am_exit_platform(int code);
void trm_init() {
__am_platform_dummy();
}
void putch(char ch) {
putchar(ch);
}
void halt(int code) {
printf("Exit (%d)\n", code);
__am_exit_platform(code);
printf("Should not reach here!\n");
while (1);
}
Area heap = {};

116
am/src/native/vme.c Normal file
View file

@ -0,0 +1,116 @@
#include "platform.h"
#define USER_SPACE RANGE(0x40000000, 0xc0000000)
typedef struct PageMap {
void *va;
void *pa;
struct PageMap *next;
int prot;
int is_mapped;
} PageMap;
#define list_foreach(p, head) \
for (p = ((PageMap *)(head))->next; p != NULL; p = p->next)
extern int __am_pgsize;
static int vme_enable = 0;
static void* (*pgalloc)(int) = NULL;
static void (*pgfree)(void *) = NULL;
bool vme_init(void* (*pgalloc_f)(int), void (*pgfree_f)(void*)) {
pgalloc = pgalloc_f;
pgfree = pgfree_f;
vme_enable = 1;
return true;
}
void protect(AddrSpace *as) {
assert(as != NULL);
as->ptr = pgalloc(__am_pgsize); // used as head of the list
as->pgsize = __am_pgsize;
as->area = USER_SPACE;
}
void unprotect(AddrSpace *as) {
}
void __am_switch(Context *c) {
if (!vme_enable) return;
PageMap *head = c->vm_head;
if (head == thiscpu->vm_head) return;
PageMap *pp;
if (thiscpu->vm_head != NULL) {
// munmap all mappings
list_foreach(pp, thiscpu->vm_head) {
if (pp->is_mapped) {
__am_pmem_unmap(pp->va);
pp->is_mapped = false;
}
}
}
if (head != NULL) {
// mmap all mappings
list_foreach(pp, head) {
assert(IN_RANGE(pp->va, USER_SPACE));
__am_pmem_map(pp->va, pp->pa, pp->prot);
pp->is_mapped = true;
}
}
thiscpu->vm_head = head;
}
void map(AddrSpace *as, void *va, void *pa, int prot) {
assert(IN_RANGE(va, USER_SPACE));
assert((uintptr_t)va % __am_pgsize == 0);
assert((uintptr_t)pa % __am_pgsize == 0);
assert(as != NULL);
PageMap *pp = NULL;
PageMap *vm_head = as->ptr;
assert(vm_head != NULL);
list_foreach(pp, vm_head) {
if (pp->va == va) break;
}
if (pp == NULL) {
pp = pgalloc(__am_pgsize); // this will waste memory, any better idea?
}
pp->va = va;
pp->pa = pa;
pp->prot = prot;
pp->is_mapped = false;
// add after to vm_head to keep vm_head unchanged,
// since vm_head is a key to describe an address space
pp->next = vm_head->next;
vm_head->next = pp;
if (vm_head == thiscpu->vm_head) {
// enforce the map immediately
__am_pmem_map(pp->va, pp->pa, pp->prot);
pp->is_mapped = true;
}
}
Context* ucontext(AddrSpace *as, Area kstack, void *entry) {
Context *c = (Context*)kstack.end - 1;
__am_get_example_uc(c);
c->uc.uc_mcontext.gregs[REG_RIP] = (uintptr_t)entry;
c->uc.uc_mcontext.gregs[REG_RSP] = (uintptr_t)USER_SPACE.end;
int ret = sigemptyset(&(c->uc.uc_sigmask)); // enable interrupt
assert(ret == 0);
c->vm_head = as->ptr;
c->ksp = (uintptr_t)kstack.end;
return c;
}
int __am_in_userspace(void *addr) {
return vme_enable && thiscpu->vm_head != NULL && IN_RANGE(addr, USER_SPACE);
}

View file

@ -0,0 +1,47 @@
#ifndef NEMU_H__
#define NEMU_H__
#include <klib-macros.h>
#include ISA_H // "x86.h", "mips32.h", ...
#if defined(__ISA_X86__)
# define nemu_trap(code) asm volatile (".byte 0xd6" : :"a"(code))
#elif defined(__ISA_MIPS32__)
# define nemu_trap(code) asm volatile ("move $v0, %0; .word 0xf0000000" : :"r"(code))
#elif defined(__ISA_RISCV32__)
# define nemu_trap(code) asm volatile("mv a0, %0; .word 0x0000006b" : :"r"(code))
#elif
# error unsupported ISA __ISA__
#endif
#ifdef __ARCH_X86_NEMU
# define SERIAL_PORT 0x3f8
# define KBD_ADDR 0x60
# define RTC_ADDR 0x48
# define SCREEN_ADDR 0x100
# define AUDIO_ADDR 0x200
#else
# define SERIAL_PORT 0xa10003f8
# define KBD_ADDR 0xa1000060
# define RTC_ADDR 0xa1000048
# define SCREEN_ADDR 0xa1000100
# define AUDIO_ADDR 0xa1000200
#endif
#define FB_ADDR 0xa0000000
#define AUDIO_SBUF_ADDR 0xa0800000
extern char _pmem_start;
#define PMEM_SIZE (128 * 1024 * 1024)
#define PMEM_END ((uintptr_t)&_pmem_start + PMEM_SIZE)
#define NEMU_PADDR_SPACE \
RANGE(&_pmem_start, PMEM_END), \
RANGE(FB_ADDR, FB_ADDR + 0x200000), \
RANGE(0xa1000000, 0xa1000000 + 0x1000) /* serial, rtc, screen, keyboard */
typedef uintptr_t PTE;
#define PGSIZE 4096
#endif

23
am/src/nemu/ioe/audio.c Normal file
View file

@ -0,0 +1,23 @@
#include <am.h>
#include <nemu.h>
#define AUDIO_FREQ_ADDR (AUDIO_ADDR + 0x00)
#define AUDIO_CHANNELS_ADDR (AUDIO_ADDR + 0x04)
#define AUDIO_SAMPLES_ADDR (AUDIO_ADDR + 0x08)
#define AUDIO_SBUF_SIZE_ADDR (AUDIO_ADDR + 0x0c)
#define AUDIO_INIT_ADDR (AUDIO_ADDR + 0x10)
#define AUDIO_COUNT_ADDR (AUDIO_ADDR + 0x14)
void __am_audio_config(AM_AUDIO_CONFIG_T *cfg) {
cfg->present = false;
}
void __am_audio_ctrl(AM_AUDIO_CTRL_T *ctrl) {
}
void __am_audio_status(AM_AUDIO_STATUS_T *stat) {
stat->count = 0;
}
void __am_audio_play(AM_AUDIO_PLAY_T *ctl) {
}

25
am/src/nemu/ioe/gpu.c Normal file
View file

@ -0,0 +1,25 @@
#include <am.h>
#include <nemu.h>
#define SYNC_ADDR (SCREEN_ADDR + 4)
void __am_gpu_init() {
}
void __am_gpu_config(AM_GPU_CONFIG_T *cfg) {
*cfg = (AM_GPU_CONFIG_T) {
.present = true, .has_accel = false,
.width = 0, .height = 0,
.vmemsz = 0
};
}
void __am_gpu_fbdraw(AM_GPU_FBDRAW_T *ctl) {
if (ctl->sync) {
outl(SYNC_ADDR, 0);
}
}
void __am_gpu_status(AM_GPU_STATUS_T *status) {
status->ready = true;
}

9
am/src/nemu/ioe/input.c Normal file
View file

@ -0,0 +1,9 @@
#include <am.h>
#include <nemu.h>
#define KEYDOWN_MASK 0x8000
void __am_input_keybrd(AM_INPUT_KEYBRD_T *kbd) {
kbd->keydown = 0;
kbd->keycode = AM_KEY_NONE;
}

53
am/src/nemu/ioe/ioe.c Normal file
View file

@ -0,0 +1,53 @@
#include <am.h>
#include <klib-macros.h>
void __am_timer_init();
void __am_gpu_init();
void __am_input_keybrd(AM_INPUT_KEYBRD_T *);
void __am_timer_rtc(AM_TIMER_RTC_T *);
void __am_timer_uptime(AM_TIMER_UPTIME_T *);
void __am_gpu_config(AM_GPU_CONFIG_T *);
void __am_gpu_status(AM_GPU_STATUS_T *);
void __am_gpu_fbdraw(AM_GPU_FBDRAW_T *);
void __am_audio_config(AM_AUDIO_CONFIG_T *);
void __am_audio_ctrl(AM_AUDIO_CTRL_T *);
void __am_audio_status(AM_AUDIO_STATUS_T *);
void __am_audio_play(AM_AUDIO_PLAY_T *);
static void __am_timer_config(AM_TIMER_CONFIG_T *cfg) { cfg->present = true; cfg->has_rtc = true; }
static void __am_input_config(AM_INPUT_CONFIG_T *cfg) { cfg->present = true; }
static void __am_uart_config(AM_UART_CONFIG_T *cfg) { cfg->present = false; }
static void __am_disk_config(AM_DISK_CONFIG_T *cfg) { cfg->present = false; }
static void __am_net_config (AM_NET_CONFIG_T *cfg) { cfg->present = false; }
typedef void (*handler_t)(void *buf);
static void *lut[128] = {
[AM_TIMER_CONFIG] = __am_timer_config,
[AM_TIMER_RTC ] = __am_timer_rtc,
[AM_TIMER_UPTIME] = __am_timer_uptime,
[AM_INPUT_CONFIG] = __am_input_config,
[AM_INPUT_KEYBRD] = __am_input_keybrd,
[AM_GPU_CONFIG ] = __am_gpu_config,
[AM_GPU_FBDRAW ] = __am_gpu_fbdraw,
[AM_GPU_STATUS ] = __am_gpu_status,
[AM_UART_CONFIG ] = __am_uart_config,
[AM_AUDIO_CONFIG] = __am_audio_config,
[AM_AUDIO_CTRL ] = __am_audio_ctrl,
[AM_AUDIO_STATUS] = __am_audio_status,
[AM_AUDIO_PLAY ] = __am_audio_play,
[AM_DISK_CONFIG ] = __am_disk_config,
[AM_NET_CONFIG ] = __am_net_config,
};
static void fail(void *buf) { panic("access nonexist register"); }
bool ioe_init() {
for (int i = 0; i < LENGTH(lut); i++)
if (!lut[i]) lut[i] = fail;
__am_gpu_init();
__am_timer_init();
return true;
}
void ioe_read (int reg, void *buf) { ((handler_t)lut[reg])(buf); }
void ioe_write(int reg, void *buf) { ((handler_t)lut[reg])(buf); }

18
am/src/nemu/ioe/timer.c Normal file
View file

@ -0,0 +1,18 @@
#include <am.h>
#include <nemu.h>
void __am_timer_init() {
}
void __am_timer_uptime(AM_TIMER_UPTIME_T *uptime) {
uptime->us = 0;
}
void __am_timer_rtc(AM_TIMER_RTC_T *rtc) {
rtc->second = 0;
rtc->minute = 0;
rtc->hour = 0;
rtc->day = 0;
rtc->month = 0;
rtc->year = 1900;
}

View file

@ -0,0 +1,4 @@
_pmem_start = 0x80000000;
/* at $(AM_HOME)/am/src/nemu/scripts/section.ld */
INCLUDE "section.ld"

View file

@ -0,0 +1,8 @@
.section entry, "ax"
.globl _start
.type _start, @function
_start:
move $fp, $zero
la $sp, _stack_pointer
jal _trm_init

View file

@ -0,0 +1,54 @@
#include <am.h>
#include <mips32.h>
#include <klib.h>
static Context* (*user_handler)(Event, Context*) = NULL;
Context* __am_irq_handle(Context *c) {
if (user_handler) {
Event ev = {0};
uint32_t ex_code = 0;
switch (ex_code) {
default: ev.event = EVENT_ERROR; break;
}
c = user_handler(ev, c);
assert(c != NULL);
}
return c;
}
extern void __am_asm_trap(void);
#define EX_ENTRY 0x80000180
bool cte_init(Context*(*handler)(Event, Context*)) {
// initialize exception entry
const uint32_t j_opcode = 0x08000000;
uint32_t instr = j_opcode | (((uint32_t)__am_asm_trap >> 2) & 0x3ffffff);
*(uint32_t *)EX_ENTRY = instr;
*(uint32_t *)(EX_ENTRY + 4) = 0; // delay slot
*(uint32_t *)0x80000000 = instr; // TLB refill exception
*(uint32_t *)(0x80000000 + 4) = 0; // delay slot
// register event handler
user_handler = handler;
return true;
}
Context *kcontext(Area kstack, void (*entry)(void *), void *arg) {
return NULL;
}
void yield() {
asm volatile("syscall 1");
}
bool ienabled() {
return false;
}
void iset(bool enable) {
}

View file

@ -0,0 +1,71 @@
#define MAP(c, f) c(f)
#define REGS(f) \
f( 1) f( 2) f( 3) f( 4) f( 5) f( 6) f( 7) f( 8) f( 9) \
f(10) f(11) f(12) f(13) f(14) f(15) f(16) f(17) f(18) f(19) \
f(20) f(21) f(22) f(23) f(24) f(25) f(28) \
f(30) f(31)
#define PUSH(n) sw $n, (n * 4)($sp);
#define POP(n) lw $n, (n * 4)($sp);
#define CONTEXT_SIZE ((31 + 6) * 4)
#define OFFSET_SP (29 * 4)
#define OFFSET_LO (32 * 4)
#define OFFSET_HI (33 * 4)
#define OFFSET_CAUSE (34 * 4)
#define OFFSET_STATUS (35 * 4)
#define OFFSET_EPC (36 * 4)
#define CP0_STATUS 12
#define CP0_CAUSE 13
#define CP0_EPC 14
.set noat
.globl __am_asm_trap
__am_asm_trap:
move $k0, $sp
addiu $sp, $sp, -CONTEXT_SIZE
MAP(REGS, PUSH)
sw $k0, OFFSET_SP($sp)
mflo $t0
mfhi $t1
mfc0 $t2, $CP0_CAUSE
mfc0 $t3, $CP0_STATUS
mfc0 $t4, $CP0_EPC
sw $t0, OFFSET_LO($sp)
sw $t1, OFFSET_HI($sp)
sw $t2, OFFSET_CAUSE($sp)
sw $t3, OFFSET_STATUS($sp)
sw $t4, OFFSET_EPC($sp)
# allow nested exception
li $a0, ~0x3
and $t3, $t3, $a0 # clear status.exl and status.ie
mtc0 $t3, $CP0_STATUS
move $a0, $sp
jal __am_irq_handle
lw $t0, OFFSET_LO($sp)
lw $t1, OFFSET_HI($sp)
lw $t3, OFFSET_STATUS($sp)
lw $t4, OFFSET_EPC($sp)
# set status.exl
ori $t3, $t3, 0x2
mtlo $t0
mthi $t1
mtc0 $t3, $CP0_STATUS
mtc0 $t4, $CP0_EPC
MAP(REGS, POP)
addiu $sp, $sp, CONTEXT_SIZE
eret

View file

@ -0,0 +1,44 @@
#include <am.h>
#include <mips32.h>
#include <nemu.h>
#define USER_SPACE RANGE(0x40000000, 0x80000000)
static void* (*pgalloc_usr)(int) = NULL;
static void (*pgfree_usr)(void*) = NULL;
static int vme_enable = 0;
bool vme_init(void* (*pgalloc_f)(int), void (*pgfree_f)(void*)) {
pgalloc_usr = pgalloc_f;
pgfree_usr = pgfree_f;
vme_enable = 1;
return true;
}
void protect(AddrSpace *as) {
as->ptr = (PTE*)(pgalloc_usr(PGSIZE));
as->pgsize = PGSIZE;
as->area = USER_SPACE;
}
void unprotect(AddrSpace *as) {
}
static PTE *cur_pdir = NULL;
void __am_get_cur_as(Context *c) {
c->pdir = cur_pdir;
}
void __am_switch(Context *c) {
if (vme_enable && c->pdir != NULL) {
cur_pdir = c->pdir;
}
}
void map(AddrSpace *as, void *va, void *pa, int prot) {
}
Context *ucontext(AddrSpace *as, Area kstack, void *entry) {
return NULL;
}

View file

@ -0,0 +1,4 @@
_pmem_start = 0x80000000;
/* at $(AM_HOME)/am/src/nemu/scripts/section.ld */
INCLUDE "section.ld"

View file

@ -0,0 +1,8 @@
.section entry, "ax"
.globl _start
.type _start, @function
_start:
mv s0, zero
la sp, _stack_pointer
jal _trm_init

View file

@ -0,0 +1,46 @@
#include <am.h>
#include <riscv32.h>
#include <klib.h>
static Context* (*user_handler)(Event, Context*) = NULL;
Context* __am_irq_handle(Context *c) {
if (user_handler) {
Event ev = {0};
switch (c->cause) {
default: ev.event = EVENT_ERROR; break;
}
c = user_handler(ev, c);
assert(c != NULL);
}
return c;
}
extern void __am_asm_trap(void);
bool cte_init(Context*(*handler)(Event, Context*)) {
// initialize exception entry
asm volatile("csrw stvec, %0" : : "r"(__am_asm_trap));
// register event handler
user_handler = handler;
return true;
}
Context *kcontext(Area kstack, void (*entry)(void *), void *arg) {
return NULL;
}
void yield() {
asm volatile("li a7, -1; ecall");
}
bool ienabled() {
return false;
}
void iset(bool enable) {
}

View file

@ -0,0 +1,51 @@
#define concat_temp(x, y) x ## y
#define concat(x, y) concat_temp(x, y)
#define MAP(c, f) c(f)
#define REGS(f) \
f( 1) f( 3) f( 4) f( 5) f( 6) f( 7) f( 8) f( 9) \
f(10) f(11) f(12) f(13) f(14) f(15) f(16) f(17) f(18) f(19) \
f(20) f(21) f(22) f(23) f(24) f(25) f(26) f(27) f(28) f(29) \
f(30) f(31)
#define PUSH(n) sw concat(x, n), (n * 4)(sp);
#define POP(n) lw concat(x, n), (n * 4)(sp);
#define CONTEXT_SIZE ((32 + 3) * 4)
#define OFFSET_SP ( 2 * 4)
#define OFFSET_CAUSE (32 * 4)
#define OFFSET_STATUS (33 * 4)
#define OFFSET_EPC (34 * 4)
.globl __am_asm_trap
__am_asm_trap:
addi sp, sp, -CONTEXT_SIZE
MAP(REGS, PUSH)
mv t0, sp
addi t0, t0, CONTEXT_SIZE
sw t0, OFFSET_SP(sp)
csrr t0, scause
csrr t1, sstatus
csrr t2, sepc
sw t0, OFFSET_CAUSE(sp)
sw t1, OFFSET_STATUS(sp)
sw t2, OFFSET_EPC(sp)
mv a0, sp
jal __am_irq_handle
lw t1, OFFSET_STATUS(sp)
lw t2, OFFSET_EPC(sp)
csrw sstatus, t1
csrw sepc, t2
MAP(REGS, POP)
addi sp, sp, CONTEXT_SIZE
sret

View file

@ -0,0 +1,73 @@
#include <am.h>
#include <nemu.h>
#include <klib.h>
static AddrSpace kas = {};
static void* (*pgalloc_usr)(int) = NULL;
static void (*pgfree_usr)(void*) = NULL;
static int vme_enable = 0;
static Area segments[] = { // Kernel memory mappings
NEMU_PADDR_SPACE
};
#define USER_SPACE RANGE(0x40000000, 0x80000000)
static inline void set_satp(void *pdir) {
asm volatile("csrw satp, %0" : : "r"(0x80000000 | ((uintptr_t)pdir >> 12)));
}
static inline uintptr_t get_satp() {
uintptr_t satp;
asm volatile("csrr %0, satp" : "=r"(satp));
return satp << 12;
}
bool vme_init(void* (*pgalloc_f)(int), void (*pgfree_f)(void*)) {
pgalloc_usr = pgalloc_f;
pgfree_usr = pgfree_f;
kas.ptr = pgalloc_f(PGSIZE);
int i;
for (i = 0; i < LENGTH(segments); i ++) {
void *va = segments[i].start;
for (; va < segments[i].end; va += PGSIZE) {
map(&kas, va, va, 0);
}
}
set_satp(kas.ptr);
vme_enable = 1;
return true;
}
void protect(AddrSpace *as) {
PTE *updir = (PTE*)(pgalloc_usr(PGSIZE));
as->ptr = updir;
as->area = USER_SPACE;
as->pgsize = PGSIZE;
// map kernel space
memcpy(updir, kas.ptr, PGSIZE);
}
void unprotect(AddrSpace *as) {
}
void __am_get_cur_as(Context *c) {
c->pdir = (vme_enable ? (void *)get_satp() : NULL);
}
void __am_switch(Context *c) {
if (vme_enable && c->pdir != NULL) {
set_satp(c->pdir);
}
}
void map(AddrSpace *as, void *va, void *pa, int prot) {
}
Context *ucontext(AddrSpace *as, Area kstack, void *entry) {
return NULL;
}

View file

@ -0,0 +1,4 @@
_pmem_start = 0x0;
/* at $(AM_HOME)/am/src/nemu/scripts/section.ld */
INCLUDE "section.ld"

View file

@ -0,0 +1,8 @@
.section entry, "ax"
.globl _start
.type _start, @function
_start:
mov $0, %ebp
mov $_stack_pointer, %esp
call _trm_init # never return

67
am/src/nemu/isa/x86/cte.c Normal file
View file

@ -0,0 +1,67 @@
#include <am.h>
#include <x86.h>
#include <klib.h>
#define NR_IRQ 256 // IDT size
#define SEG_KCODE 1
#define SEG_KDATA 2
static Context* (*user_handler)(Event, Context*) = NULL;
void __am_irq0();
void __am_vecsys();
void __am_vectrap();
void __am_vecnull();
Context* __am_irq_handle(Context *c) {
if (user_handler) {
Event ev = {0};
switch (c->irq) {
default: ev.event = EVENT_ERROR; break;
}
c = user_handler(ev, c);
assert(c != NULL);
}
return c;
}
bool cte_init(Context*(*handler)(Event, Context*)) {
static GateDesc32 idt[NR_IRQ];
// initialize IDT
for (unsigned int i = 0; i < NR_IRQ; i ++) {
idt[i] = GATE32(STS_TG, KSEL(SEG_KCODE), __am_vecnull, DPL_KERN);
}
// ----------------------- interrupts ----------------------------
idt[32] = GATE32(STS_IG, KSEL(SEG_KCODE), __am_irq0, DPL_KERN);
// ---------------------- system call ----------------------------
idt[0x80] = GATE32(STS_TG, KSEL(SEG_KCODE), __am_vecsys, DPL_USER);
idt[0x81] = GATE32(STS_TG, KSEL(SEG_KCODE), __am_vectrap, DPL_KERN);
set_idt(idt, sizeof(idt));
// register event handler
user_handler = handler;
return true;
}
Context* kcontext(Area kstack, void (*entry)(void *), void *arg) {
return NULL;
}
void yield() {
asm volatile("int $0x81");
}
bool ienabled() {
return false;
}
void iset(bool enable) {
}

View file

@ -0,0 +1,22 @@
#----|------------entry------------|---usp---|---irq id---|-----handler-----|
.globl __am_vecsys; __am_vecsys: pushl $0; pushl $0x80; jmp __am_asm_trap
.globl __am_vectrap; __am_vectrap: pushl $0; pushl $0x81; jmp __am_asm_trap
.globl __am_irq0; __am_irq0: pushl $0; pushl $32; jmp __am_asm_trap
.globl __am_vecnull; __am_vecnull: pushl $0; pushl $-1; jmp __am_asm_trap
__am_asm_trap:
pushal
pushl $0
pushl %esp
call __am_irq_handle
addl $4, %esp
addl $4, %esp
popal
addl $4, %esp
iret

64
am/src/nemu/isa/x86/vme.c Normal file
View file

@ -0,0 +1,64 @@
#include <am.h>
#include <nemu.h>
#include <klib.h>
static AddrSpace kas = {};
static void* (*pgalloc_usr)(int) = NULL;
static void (*pgfree_usr)(void*) = NULL;
static int vme_enable = 0;
static Area segments[] = { // Kernel memory mappings
NEMU_PADDR_SPACE
};
#define USER_SPACE RANGE(0x40000000, 0xc0000000)
bool vme_init(void* (*pgalloc_f)(int), void (*pgfree_f)(void*)) {
pgalloc_usr = pgalloc_f;
pgfree_usr = pgfree_f;
kas.ptr = pgalloc_f(PGSIZE);
int i;
for (i = 0; i < LENGTH(segments); i ++) {
void *va = segments[i].start;
for (; va < segments[i].end; va += PGSIZE) {
map(&kas, va, va, 0);
}
}
set_cr3(kas.ptr);
set_cr0(get_cr0() | CR0_PG);
vme_enable = 1;
return true;
}
void protect(AddrSpace *as) {
PTE *updir = (PTE*)(pgalloc_usr(PGSIZE));
as->ptr = updir;
as->area = USER_SPACE;
as->pgsize = PGSIZE;
// map kernel space
memcpy(updir, kas.ptr, PGSIZE);
}
void unprotect(AddrSpace *as) {
}
void __am_get_cur_as(Context *c) {
c->cr3 = (vme_enable ? (void *)get_cr3() : NULL);
}
void __am_switch(Context *c) {
if (vme_enable && c->cr3 != NULL) {
set_cr3(c->cr3);
}
}
void map(AddrSpace *as, void *va, void *pa, int prot) {
}
Context* ucontext(AddrSpace *as, Area kstack, void *entry) {
return NULL;
}

17
am/src/nemu/mpe.c Normal file
View file

@ -0,0 +1,17 @@
#include <am.h>
bool mpe_init(void (*entry)()) {
return false;
}
int cpu_count() {
return 1;
}
int cpu_current() {
return 0;
}
int atomic_xchg(int *addr, intptr_t newval) {
return 0;
}

View file

@ -0,0 +1,31 @@
ENTRY(_start)
SECTIONS {
. = _pmem_start + 0x100000;
.text : {
*(entry)
*(.text*)
}
etext = .;
_etext = .;
.rodata : {
*(.rodata*)
}
.data : {
*(.data)
}
edata = .;
_data = .;
.bss : {
_bss_start = .;
*(.bss*)
*(.sbss*)
*(.scommon)
}
_stack_top = ALIGN(0x1000);
. = _stack_top + 0x8000;
_stack_pointer = .;
end = .;
_end = .;
_heap_start = ALIGN(0x1000);
}

27
am/src/nemu/trm.c Normal file
View file

@ -0,0 +1,27 @@
#include <am.h>
#include <nemu.h>
extern char _heap_start;
int main(const char *args);
Area heap = RANGE(&_heap_start, PMEM_END);
#ifndef MAINARGS
#define MAINARGS ""
#endif
static const char mainargs[] = MAINARGS;
void putch(char ch) {
outb(SERIAL_PORT, ch);
}
void halt(int code) {
nemu_trap(code);
// should not reach here
while (1);
}
void _trm_init() {
int ret = main(mainargs);
halt(ret);
}

20
am/src/riscv32.h Normal file
View file

@ -0,0 +1,20 @@
#ifndef RISCV32_H__
#define RISCV32_H__
#include <stdint.h>
static inline uint8_t inb(uintptr_t addr) { return *(volatile uint8_t *)addr; }
static inline uint16_t inw(uintptr_t addr) { return *(volatile uint16_t *)addr; }
static inline uint32_t inl(uintptr_t addr) { return *(volatile uint32_t *)addr; }
static inline void outb(uintptr_t addr, uint8_t data) { *(volatile uint8_t *)addr = data; }
static inline void outw(uintptr_t addr, uint16_t data) { *(volatile uint16_t *)addr = data; }
static inline void outl(uintptr_t addr, uint32_t data) { *(volatile uint32_t *)addr = data; }
#define PTE_V 0x01
#define PTE_R 0x02
#define PTE_W 0x04
#define PTE_X 0x08
#define PTE_U 0x10
#endif

353
am/src/x86.h Normal file
View file

@ -0,0 +1,353 @@
// CPU rings
#define DPL_KERN 0x0 // Kernel (ring 0)
#define DPL_USER 0x3 // User (ring 3)
// Application Segment type bits
#define STA_X 0x8 // Executable segment
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
// System Segment type bits
#define STS_T32A 0x9 // Available 32-bit TSS
#define STS_IG 0xe // 32/64-bit Interrupt Gate
#define STS_TG 0xf // 32/64-bit Trap Gate
// EFLAGS register
#define FL_IF 0x00000200 // Interrupt Enable
// Control Register flags
#define CR0_PE 0x00000001 // Protection Enable
#define CR0_PG 0x80000000 // Paging
#define CR4_PAE 0x00000020 // Physical Address Extension
// Page table/directory entry flags
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Large Page (1 GiB or 2 MiB)
// GDT selectors
#define KSEL(seg) (((seg) << 3) | DPL_KERN)
#define USEL(seg) (((seg) << 3) | DPL_USER)
// Interrupts and exceptions
#define T_IRQ0 32
#define IRQ_TIMER 0
#define IRQ_KBD 1
#define IRQ_COM1 4
#define IRQ_ERROR 19
#define IRQ_SPURIOUS 31
#define EX_DE 0
#define EX_UD 6
#define EX_NM 7
#define EX_DF 8
#define EX_TS 10
#define EX_NP 11
#define EX_SS 12
#define EX_GP 13
#define EX_PF 14
#define EX_MF 15
#define EX_SYSCALL 0x80
#define EX_YIELD 0x81
// List of interrupts and exceptions (#irq, DPL, hardware errorcode)
#define IRQS(_) \
_( 0, KERN, NOERR) \
_( 1, KERN, NOERR) \
_( 2, KERN, NOERR) \
_( 3, KERN, NOERR) \
_( 4, KERN, NOERR) \
_( 5, KERN, NOERR) \
_( 6, KERN, NOERR) \
_( 7, KERN, NOERR) \
_( 8, KERN, ERR) \
_( 9, KERN, NOERR) \
_( 10, KERN, ERR) \
_( 11, KERN, ERR) \
_( 12, KERN, ERR) \
_( 13, KERN, ERR) \
_( 14, KERN, ERR) \
_( 15, KERN, NOERR) \
_( 16, KERN, NOERR) \
_( 19, KERN, NOERR) \
_( 31, KERN, NOERR) \
_( 32, KERN, NOERR) \
_( 33, KERN, NOERR) \
_( 34, KERN, NOERR) \
_( 35, KERN, NOERR) \
_( 36, KERN, NOERR) \
_( 37, KERN, NOERR) \
_( 38, KERN, NOERR) \
_( 39, KERN, NOERR) \
_( 40, KERN, NOERR) \
_( 41, KERN, NOERR) \
_( 42, KERN, NOERR) \
_( 43, KERN, NOERR) \
_( 44, KERN, NOERR) \
_( 45, KERN, NOERR) \
_( 46, KERN, NOERR) \
_( 47, KERN, NOERR) \
_(128, USER, NOERR) \
_(129, USER, NOERR)
// AM-specific configurations
#define MAX_CPU 8
#define BOOTREC_ADDR 0x07000
#define MAINARG_ADDR 0x10000
// Below are only visible to c/c++ files
#ifndef __ASSEMBLER__
#include <stdint.h>
// Segment Descriptor
typedef struct {
uint32_t lim_15_0 : 16; // Low bits of segment limit
uint32_t base_15_0 : 16; // Low bits of segment base address
uint32_t base_23_16 : 8; // Middle bits of segment base address
uint32_t type : 4; // Segment type (see STS_ constants)
uint32_t s : 1; // 0 = system, 1 = application
uint32_t dpl : 2; // Descriptor Privilege Level
uint32_t p : 1; // Present
uint32_t lim_19_16 : 4; // High bits of segment limit
uint32_t avl : 1; // Unused (available for software use)
uint32_t l : 1; // 64-bit segment
uint32_t db : 1; // 32-bit segment
uint32_t g : 1; // Granularity: limit scaled by 4K when set
uint32_t base_31_24 : 8; // High bits of segment base address
} SegDesc;
// Gate descriptors for interrupts and traps
typedef struct {
uint32_t off_15_0 : 16; // Low 16 bits of offset in segment
uint32_t cs : 16; // Code segment selector
uint32_t args : 5; // # args, 0 for interrupt/trap gates
uint32_t rsv1 : 3; // Reserved(should be zero I guess)
uint32_t type : 4; // Type(STS_{TG,IG32,TG32})
uint32_t s : 1; // Must be 0 (system)
uint32_t dpl : 2; // Descriptor(meaning new) privilege level
uint32_t p : 1; // Present
uint32_t off_31_16 : 16; // High bits of offset in segment
} GateDesc32;
typedef struct {
uint32_t off_15_0 : 16;
uint32_t cs : 16;
uint32_t isv : 3;
uint32_t zero1 : 5;
uint32_t type : 4;
uint32_t zero2 : 1;
uint32_t dpl : 2;
uint32_t p : 1;
uint32_t off_31_16 : 16;
uint32_t off_63_32 : 32;
uint32_t rsv : 32;
} GateDesc64;
// Task State Segment (TSS)
typedef struct {
uint32_t link; // Unused
uint32_t esp0; // Stack pointers and segment selectors
uint32_t ss0; // after an increase in privilege level
uint32_t padding[23];
} __attribute__((packed)) TSS32;
typedef struct {
uint32_t rsv;
uint64_t rsp0, rsp1, rsp2;
uint32_t padding[19];
} __attribute__((packed)) TSS64;
// Multiprocesor configuration
typedef struct { // configuration table header
uint8_t signature[4]; // "PCMP"
uint16_t length; // total table length
uint8_t version; // [14]
uint8_t checksum; // all bytes must add up to 0
uint8_t product[20]; // product id
uint32_t oemtable; // OEM table pointer
uint16_t oemlength; // OEM table length
uint16_t entry; // entry count
uint32_t lapicaddr; // address of local APIC
uint16_t xlength; // extended table length
uint8_t xchecksum; // extended table checksum
uint8_t reserved;
} MPConf;
typedef struct {
int magic;
uint32_t conf; // MP config table addr
uint8_t length; // 1
uint8_t specrev; // [14]
uint8_t checksum; // all bytes add to 0
uint8_t type; // config type
uint8_t imcrp;
uint8_t reserved[3];
} MPDesc;
typedef struct {
uint32_t jmp_code;
int32_t is_ap;
} BootRecord;
#define SEG16(type, base, lim, dpl) (SegDesc) \
{ (lim) & 0xffff, (uintptr_t)(base) & 0xffff, \
((uintptr_t)(base) >> 16) & 0xff, type, 0, dpl, 1, \
(uintptr_t)(lim) >> 16, 0, 0, 1, 0, (uintptr_t)(base) >> 24 }
#define SEG32(type, base, lim, dpl) (SegDesc) \
{ ((lim) >> 12) & 0xffff, (uintptr_t)(base) & 0xffff, \
((uintptr_t)(base) >> 16) & 0xff, type, 1, dpl, 1, \
(uintptr_t)(lim) >> 28, 0, 0, 1, 1, (uintptr_t)(base) >> 24 }
#define SEG64(type, dpl) (SegDesc) \
{ 0, 0, 0, type, 1, dpl, 1, 0, 0, 1, 0, 0 }
#define SEGTSS64(type, base, lim, dpl) (SegDesc) \
{ (lim) & 0xffff, (uint32_t)(base) & 0xffff, \
((uint32_t)(base) >> 16) & 0xff, type, 0, dpl, 1, \
(uint32_t)(lim) >> 16, 0, 0, 0, 0, (uint32_t)(base) >> 24 }
#define GATE32(type, cs, entry, dpl) (GateDesc32) \
{ (uint32_t)(entry) & 0xffff, (cs), 0, 0, (type), 0, (dpl), \
1, (uint32_t)(entry) >> 16 }
#define GATE64(type, cs, entry, dpl) (GateDesc64) \
{ (uint64_t)(entry) & 0xffff, (cs), 0, 0, (type), 0, (dpl), \
1, ((uint64_t)(entry) >> 16) & 0xffff, (uint64_t)(entry) >> 32, 0 }
// Instruction wrappers
static inline uint8_t inb(int port) {
uint8_t data;
asm volatile ("inb %1, %0" : "=a"(data) : "d"((uint16_t)port));
return data;
}
static inline uint16_t inw(int port) {
uint16_t data;
asm volatile ("inw %1, %0" : "=a"(data) : "d"((uint16_t)port));
return data;
}
static inline uint32_t inl(int port) {
uint32_t data;
asm volatile ("inl %1, %0" : "=a"(data) : "d"((uint16_t)port));
return data;
}
static inline void outb(int port, uint8_t data) {
asm volatile ("outb %%al, %%dx" : : "a"(data), "d"((uint16_t)port));
}
static inline void outw(int port, uint16_t data) {
asm volatile ("outw %%ax, %%dx" : : "a"(data), "d"((uint16_t)port));
}
static inline void outl(int port, uint32_t data) {
asm volatile ("outl %%eax, %%dx" : : "a"(data), "d"((uint16_t)port));
}
static inline void cli() {
asm volatile ("cli");
}
static inline void sti() {
asm volatile ("sti");
}
static inline void hlt() {
asm volatile ("hlt");
}
static inline void pause() {
asm volatile ("pause");
}
static inline uint32_t get_efl() {
volatile uintptr_t efl;
asm volatile ("pushf; pop %0": "=r"(efl));
return efl;
}
static inline uintptr_t get_cr0(void) {
volatile uintptr_t val;
asm volatile ("mov %%cr0, %0" : "=r"(val));
return val;
}
static inline void set_cr0(uintptr_t cr0) {
asm volatile ("mov %0, %%cr0" : : "r"(cr0));
}
static inline void set_idt(void *idt, int size) {
static volatile struct {
int16_t size;
void *idt;
} __attribute__((packed)) data;
data.size = size;
data.idt = idt;
asm volatile ("lidt (%0)" : : "r"(&data));
}
static inline void set_gdt(void *gdt, int size) {
static volatile struct {
int16_t size;
void *gdt;
} __attribute__((packed)) data;
data.size = size;
data.gdt = gdt;
asm volatile ("lgdt (%0)" : : "r"(&data));
}
static inline void set_tr(int selector) {
asm volatile ("ltr %0" : : "r"((uint16_t)selector));
}
static inline uintptr_t get_cr2() {
volatile uintptr_t val;
asm volatile ("mov %%cr2, %0" : "=r"(val));
return val;
}
static inline uintptr_t get_cr3() {
volatile uintptr_t val;
asm volatile ("mov %%cr3, %0" : "=r"(val));
return val;
}
static inline void set_cr3(void *pdir) {
asm volatile ("mov %0, %%cr3" : : "r"(pdir));
}
static inline int xchg(int *addr, int newval) {
int result;
asm volatile ("lock xchg %0, %1":
"+m"(*addr), "=a"(result) : "1"(newval) : "cc", "memory");
return result;
}
static inline uint64_t rdtsc() {
uint32_t lo, hi;
asm volatile ("rdtsc": "=a"(lo), "=d"(hi));
return ((uint64_t)hi << 32) | lo;
}
#define interrupt(id) \
asm volatile ("int $" #id);
static inline void stack_switch_call(void *sp, void *entry, uintptr_t arg) {
asm volatile (
#if __x86_64__
"movq %0, %%rsp; movq %2, %%rdi; jmp *%1" : : "b"((uintptr_t)sp), "d"(entry), "a"(arg)
#else
"movl %0, %%esp; movl %2, 4(%0); jmp *%1" : : "b"((uintptr_t)sp - 8), "d"(entry), "a"(arg)
#endif
);
}
static inline volatile BootRecord *boot_record() {
return (BootRecord *)BOOTREC_ADDR;
}
#endif // __ASSEMBLER__

View file

@ -0,0 +1,8 @@
SRCS := start.S main.c
bootblock.o: $(SRCS) Makefile
@echo + CC $(SRCS)
@gcc -m32 -Os -nostdlib -Ttext 0x7c00 -I$(AM_HOME)/am/src -o bootblock.o $(SRCS)
@python3 genboot.py bootblock.o
clean:
rm -rf *.o

View file

@ -0,0 +1,13 @@
import sys, pathlib, subprocess
f = pathlib.Path(sys.argv[1])
try:
data = subprocess.run(
['objcopy', '-S', '-O', 'binary', '-j', '.text', f, '/dev/stdout'],
capture_output=True).stdout
assert len(data) <= 510
data += b'\0' * (510 - len(data)) + b'\x55\xaa'
f.write_bytes(data)
except:
f.unlink()
raise

View file

@ -0,0 +1,90 @@
#include <stdint.h>
#include <elf.h>
#include <x86.h>
#define SECTSIZE 512
#define ARGSIZE 1024
static inline void wait_disk(void) {
while ((inb(0x1f7) & 0xc0) != 0x40);
}
static inline void read_disk(void *buf, int sect) {
wait_disk();
outb(0x1f2, 1);
outb(0x1f3, sect);
outb(0x1f4, sect >> 8);
outb(0x1f5, sect >> 16);
outb(0x1f6, (sect >> 24) | 0xE0);
outb(0x1f7, 0x20);
wait_disk();
for (int i = 0; i < SECTSIZE / 4; i ++) {
((uint32_t *)buf)[i] = inl(0x1f0);
}
}
static inline void copy_from_disk(void *buf, int nbytes, int disk_offset) {
uint32_t cur = (uint32_t)buf & ~(SECTSIZE - 1);
uint32_t ed = (uint32_t)buf + nbytes;
uint32_t sect = (disk_offset / SECTSIZE) + (ARGSIZE / SECTSIZE) + 1;
for(; cur < ed; cur += SECTSIZE, sect ++)
read_disk((void *)cur, sect);
}
static void load_program(uint32_t filesz, uint32_t memsz, uint32_t paddr, uint32_t offset) {
copy_from_disk((void *)paddr, filesz, offset);
char *bss = (void *)(paddr + filesz);
for (uint32_t i = filesz; i != memsz; i++) {
*bss++ = 0;
}
}
static void load_elf64(Elf64_Ehdr *elf) {
Elf64_Phdr *ph = (Elf64_Phdr *)((char *)elf + elf->e_phoff);
for (int i = 0; i < elf->e_phnum; i++, ph++) {
load_program(
(uint32_t)ph->p_filesz,
(uint32_t)ph->p_memsz,
(uint32_t)ph->p_paddr,
(uint32_t)ph->p_offset
);
}
}
static void load_elf32(Elf32_Ehdr *elf) {
Elf32_Phdr *ph = (Elf32_Phdr *)((char *)elf + elf->e_phoff);
for (int i = 0; i < elf->e_phnum; i++, ph++) {
load_program(
(uint32_t)ph->p_filesz,
(uint32_t)ph->p_memsz,
(uint32_t)ph->p_paddr,
(uint32_t)ph->p_offset
);
}
}
void load_kernel(void) {
Elf32_Ehdr *elf32 = (void *)0x8000;
Elf64_Ehdr *elf64 = (void *)0x8000;
int is_ap = boot_record()->is_ap;
if (!is_ap) {
// load argument (string) to memory
copy_from_disk((void *)MAINARG_ADDR, 1024, -1024);
// load elf header to memory
copy_from_disk(elf32, 4096, 0);
if (elf32->e_machine == EM_X86_64) {
load_elf64(elf64);
} else {
load_elf32(elf32);
}
} else {
// everything should be loaded
}
if (elf32->e_machine == EM_X86_64) {
((void(*)())(uint32_t)elf64->e_entry)();
} else {
((void(*)())(uint32_t)elf32->e_entry)();
}
}

View file

@ -0,0 +1,60 @@
#define CR0_PE 0x00000001
#define GDT_ENTRY(n) \
((n) << 3)
#define SEG_NULLASM \
.word 0, 0; \
.byte 0, 0, 0, 0
#define SEG_ASM(type, base, lim) \
.word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \
.byte (((base) >> 16) & 0xff), (0x90 | (type)), \
(0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff)
.code16
.globl _start
_start:
cli
xorw %ax, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
# Set a 640 x 480 x 32 video mode
mov $0x4f01, %ax
mov $0x0112, %cx
mov $0x4000, %di
int $0x10
mov $0x4f02, %ax
mov $0x4112, %bx
int $0x10
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0
ljmp $GDT_ENTRY(1), $start32
.code32
start32:
movw $GDT_ENTRY(2), %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
movl $0xa000, %esp
call load_kernel
# GDT
.p2align 2
gdt:
SEG_NULLASM
SEG_ASM(0xA, 0x0, 0xffffffff)
SEG_ASM(0x2, 0x0, 0xffffffff)
gdtdesc:
.word (gdtdesc - gdt - 1)
.long gdt

165
am/src/x86/qemu/cte.c Normal file
View file

@ -0,0 +1,165 @@
#include "x86-qemu.h"
static Context* (*user_handler)(Event, Context*) = NULL;
#if __x86_64__
static GateDesc64 idt[NR_IRQ];
#define GATE GATE64
#else
static GateDesc32 idt[NR_IRQ];
#define GATE GATE32
#endif
#define IRQHANDLE_DECL(id, dpl, err) \
void __am_irq##id();
IRQS(IRQHANDLE_DECL)
void __am_irqall();
void __amkcontext_start();
void __am_irq_handle(struct trap_frame *tf) {
Context *saved_ctx = &tf->saved_context;
Event ev = {
.event = EVENT_NULL,
.cause = 0, .ref = 0,
.msg = "(no message)",
};
#if __x86_64
saved_ctx->rip = tf->rip;
saved_ctx->cs = tf->cs;
saved_ctx->rflags = tf->rflags;
saved_ctx->rsp = tf->rsp;
saved_ctx->rsp0 = CPU->tss.rsp0;
saved_ctx->ss = tf->ss;
#else
saved_ctx->eip = tf->eip;
saved_ctx->cs = tf->cs;
saved_ctx->eflags = tf->eflags;
saved_ctx->esp0 = CPU->tss.esp0;
saved_ctx->ss3 = USEL(SEG_UDATA);
// no ss/esp saved for DPL_KERNEL
saved_ctx->esp = (tf->cs & DPL_USER ? tf->esp : (uint32_t)(tf + 1) - 8);
#endif
saved_ctx->cr3 = (void *)get_cr3();
#define IRQ T_IRQ0 +
#define MSG(m) ev.msg = m;
if (IRQ 0 <= tf->irq && tf->irq < IRQ 32) {
__am_lapic_eoi();
}
switch (tf->irq) {
case IRQ 0: MSG("timer interrupt (lapic)")
ev.event = EVENT_IRQ_TIMER; break;
case IRQ 1: MSG("I/O device IRQ1 (keyboard)")
ev.event = EVENT_IRQ_IODEV; break;
case IRQ 4: MSG("I/O device IRQ4 (COM1)")
ev.event = EVENT_IRQ_IODEV; break;
case EX_SYSCALL: MSG("int $0x80 system call")
ev.event = EVENT_SYSCALL; break;
case EX_YIELD: MSG("int $0x81 yield")
ev.event = EVENT_YIELD; break;
case EX_DE: MSG("DE #0 divide by zero")
ev.event = EVENT_ERROR; break;
case EX_UD: MSG("UD #6 invalid opcode")
ev.event = EVENT_ERROR; break;
case EX_NM: MSG("NM #7 coprocessor error")
ev.event = EVENT_ERROR; break;
case EX_DF: MSG("DF #8 double fault")
ev.event = EVENT_ERROR; break;
case EX_TS: MSG("TS #10 invalid TSS")
ev.event = EVENT_ERROR; break;
case EX_NP: MSG("NP #11 segment/gate not present")
ev.event = EVENT_ERROR; break;
case EX_SS: MSG("SS #12 stack fault")
ev.event = EVENT_ERROR; break;
case EX_GP: MSG("GP #13, general protection fault")
ev.event = EVENT_ERROR; break;
case EX_PF: MSG("PF #14, page fault, @cause: PROT_XXX")
ev.event = EVENT_PAGEFAULT;
if (tf->errcode & 0x1) ev.cause |= MMAP_NONE;
if (tf->errcode & 0x2) ev.cause |= MMAP_WRITE;
else ev.cause |= MMAP_READ;
ev.ref = get_cr2();
break;
default: MSG("unrecognized interrupt/exception")
ev.event = EVENT_ERROR;
ev.cause = tf->errcode;
break;
}
Context *ret_ctx = user_handler(ev, saved_ctx);
panic_on(!ret_ctx, "returning to NULL context");
if (ret_ctx->cr3) {
set_cr3(ret_ctx->cr3);
#if __x86_64__
CPU->tss.rsp0 = ret_ctx->rsp0;
#else
CPU->tss.ss0 = KSEL(SEG_KDATA);
CPU->tss.esp0 = ret_ctx->esp0;
#endif
}
__am_iret(ret_ctx);
}
bool cte_init(Context *(*handler)(Event, Context *)) {
panic_on(cpu_current() != 0, "init CTE in non-bootstrap CPU");
panic_on(!handler, "no interrupt handler");
for (int i = 0; i < NR_IRQ; i ++) {
idt[i] = GATE(STS_TG, KSEL(SEG_KCODE), __am_irqall, DPL_KERN);
}
#define IDT_ENTRY(id, dpl, err) \
idt[id] = GATE(STS_TG, KSEL(SEG_KCODE), __am_irq##id, DPL_##dpl);
IRQS(IDT_ENTRY)
user_handler = handler;
return true;
}
void yield() {
interrupt(0x81);
}
bool ienabled() {
return (get_efl() & FL_IF) != 0;
}
void iset(bool enable) {
if (enable) sti();
else cli();
}
void __am_panic_on_return() { panic("kernel context returns"); }
Context* kcontext(Area kstack, void (*entry)(void *), void *arg) {
Context *ctx = kstack.end - sizeof(Context);
*ctx = (Context) { 0 };
#if __x86_64__
ctx->cs = KSEL(SEG_KCODE);
ctx->rip = (uintptr_t)__amkcontext_start;
ctx->rflags = FL_IF;
ctx->rsp = (uintptr_t)kstack.end;
#else
ctx->ds = KSEL(SEG_KDATA);
ctx->cs = KSEL(SEG_KCODE);
ctx->eip = (uintptr_t)__amkcontext_start;
ctx->eflags = FL_IF;
ctx->esp = (uintptr_t)kstack.end;
#endif
ctx->GPR1 = (uintptr_t)arg;
ctx->GPR2 = (uintptr_t)entry;
return ctx;
}
void __am_percpu_initirq() {
__am_ioapic_enable(IRQ_KBD, 0);
__am_ioapic_enable(IRQ_COM1, 0);
set_idt(idt, sizeof(idt));
}

471
am/src/x86/qemu/ioe.c Normal file
View file

@ -0,0 +1,471 @@
#include "x86-qemu.h"
#include <klib.h> // TODO: delete
// UART
// ====================================================
#define COM1 0x3f8
static int uart_init() {
outb(COM1 + 2, 0);
outb(COM1 + 3, 0x80);
outb(COM1 + 0, 115200 / 9600);
outb(COM1 + 1, 0);
outb(COM1 + 3, 0x03);
outb(COM1 + 4, 0);
outb(COM1 + 1, 0x01);
inb (COM1 + 2);
inb (COM1 + 0);
return 0;
}
static void uart_config(AM_UART_CONFIG_T *cfg) {
cfg->present = true;
}
static void uart_tx(AM_UART_TX_T *send) {
outb(COM1, send->data);
}
static void uart_rx(AM_UART_RX_T *recv) {
recv->data = (inb(COM1 + 5) & 0x1) ? inb(COM1) : -1;
}
// Timer
// ====================================================
static AM_TIMER_RTC_T boot_date;
static uint32_t freq_mhz = 2000;
static uint64_t uptsc;
static void timer_rtc(AM_TIMER_RTC_T *rtc);
static inline int read_rtc(int reg) {
outb(0x70, reg);
int ret = inb(0x71);
return (ret & 0xf) + (ret >> 4) * 10;
}
static void read_rtc_async(AM_TIMER_RTC_T *rtc) {
*rtc = (AM_TIMER_RTC_T) {
.second = read_rtc(0),
.minute = read_rtc(2),
.hour = read_rtc(4),
.day = read_rtc(7),
.month = read_rtc(8),
.year = read_rtc(9) + 2000,
};
}
static void wait_sec(AM_TIMER_RTC_T *t1) {
AM_TIMER_RTC_T t0;
while (1) {
read_rtc_async(&t0);
for (int volatile i = 0; i < 100000; i++) ;
read_rtc_async(t1);
if (t0.second != t1->second) {
return;
}
}
}
static uint32_t estimate_freq() {
AM_TIMER_RTC_T rtc1, rtc2;
uint64_t tsc1, tsc2, t1, t2;
wait_sec(&rtc1); tsc1 = rdtsc(); t1 = rtc1.minute * 60 + rtc1.second;
wait_sec(&rtc2); tsc2 = rdtsc(); t2 = rtc2.minute * 60 + rtc2.second;
if (t1 >= t2) return estimate_freq(); // passed an hour; try again
return ((tsc2 - tsc1) >> 20) / (t2 - t1);
}
static void timer_init() {
freq_mhz = estimate_freq();
timer_rtc(&boot_date);
uptsc = rdtsc();
}
static void timer_config(AM_TIMER_CONFIG_T *cfg) {
cfg->present = cfg->has_rtc = true;
}
static void timer_rtc(AM_TIMER_RTC_T *rtc) {
int tmp;
do {
read_rtc_async(rtc);
tmp = read_rtc(0);
} while (tmp != rtc->second);
}
static void timer_uptime(AM_TIMER_UPTIME_T *upt) {
upt->us = (rdtsc() - uptsc) / freq_mhz;
}
// Input
// ====================================================
static int keylut[128] = {
[0x01] = AM_KEY_ESCAPE, [0x02] = AM_KEY_1, [0x03] = AM_KEY_2,
[0x04] = AM_KEY_3, [0x05] = AM_KEY_4, [0x06] = AM_KEY_5, [0x07] = AM_KEY_6,
[0x08] = AM_KEY_7, [0x09] = AM_KEY_8, [0x0a] = AM_KEY_9, [0x0b] = AM_KEY_0,
[0x0c] = AM_KEY_MINUS, [0x0d] = AM_KEY_EQUALS,
[0x0e] = AM_KEY_BACKSPACE, [0x0f] = AM_KEY_TAB,
[0x10] = AM_KEY_Q, [0x11] = AM_KEY_W, [0x12] = AM_KEY_E, [0x13] = AM_KEY_R,
[0x14] = AM_KEY_T, [0x15] = AM_KEY_Y, [0x16] = AM_KEY_U, [0x17] = AM_KEY_I,
[0x18] = AM_KEY_O, [0x19] = AM_KEY_P, [0x1a] = AM_KEY_LEFTBRACKET,
[0x1b] = AM_KEY_RIGHTBRACKET, [0x1c] = AM_KEY_RETURN,
[0x1d] = AM_KEY_LCTRL, [0x1e] = AM_KEY_A, [0x1f] = AM_KEY_S,
[0x20] = AM_KEY_D, [0x21] = AM_KEY_F, [0x22] = AM_KEY_G, [0x23] = AM_KEY_H,
[0x24] = AM_KEY_J, [0x25] = AM_KEY_K, [0x26] = AM_KEY_L,
[0x27] = AM_KEY_SEMICOLON, [0x28] = AM_KEY_APOSTROPHE,
[0x29] = AM_KEY_GRAVE, [0x2a] = AM_KEY_LSHIFT,
[0x2b] = AM_KEY_BACKSLASH, [0x2c] = AM_KEY_Z, [0x2d] = AM_KEY_X,
[0x2e] = AM_KEY_C, [0x2f] = AM_KEY_V, [0x30] = AM_KEY_B, [0x31] = AM_KEY_N,
[0x32] = AM_KEY_M, [0x33] = AM_KEY_COMMA, [0x34] = AM_KEY_PERIOD,
[0x35] = AM_KEY_SLASH, [0x36] = AM_KEY_RSHIFT, [0x38] = AM_KEY_LALT,
[0x38] = AM_KEY_RALT, [0x39] = AM_KEY_SPACE, [0x3a] = AM_KEY_CAPSLOCK,
[0x3b] = AM_KEY_F1, [0x3c] = AM_KEY_F2, [0x3d] = AM_KEY_F3,
[0x3e] = AM_KEY_F4, [0x3f] = AM_KEY_F5, [0x40] = AM_KEY_F6,
[0x41] = AM_KEY_F7, [0x42] = AM_KEY_F8, [0x43] = AM_KEY_F9,
[0x44] = AM_KEY_F10, [0x48] = AM_KEY_INSERT,
[0x4b] = AM_KEY_HOME, [0x4d] = AM_KEY_END, [0x50] = AM_KEY_DELETE,
[0x57] = AM_KEY_F11, [0x58] = AM_KEY_F12, [0x5b] = AM_KEY_APPLICATION,
};
static void input_config(AM_INPUT_CONFIG_T *cfg) {
cfg->present = true;
}
static void input_keybrd(AM_INPUT_KEYBRD_T *ev) {
if (inb(0x64) & 0x1) {
int code = inb(0x60) & 0xff;
ev->keydown = code < 128;
ev->keycode = keylut[code & 0x7f];
} else {
ev->keydown = false;
ev->keycode = AM_KEY_NONE;
}
}
// GPU (Frame Buffer and 2D Accelerated Graphics)
// ====================================================
#define VMEM_SIZE (512 << 10)
struct vbe_info {
uint8_t ignore[18];
uint16_t width;
uint16_t height;
uint8_t ignore1[18];
uint32_t framebuffer;
} __attribute__ ((packed));
static inline uint8_t R(uint32_t p) { return p >> 16; }
static inline uint8_t G(uint32_t p) { return p >> 8; }
static inline uint8_t B(uint32_t p) { return p; }
struct pixel {
uint8_t b, g, r;
} __attribute__ ((packed));
static struct pixel *fb;
static uint8_t vmem[VMEM_SIZE], vbuf[VMEM_SIZE], *vbuf_head;
static struct gpu_canvas display;
static inline void *to_host(gpuptr_t ptr) { return ptr == AM_GPU_NULL ? NULL : vmem + ptr; }
static void gpu_init() {
struct vbe_info *info = (struct vbe_info *)0x00004000;
display.w = info->width;
display.h = info->height;
fb = (void *)((intptr_t)(info->framebuffer));
}
static void gpu_config(AM_GPU_CONFIG_T *cfg) {
*cfg = (AM_GPU_CONFIG_T) {
.present = true,
.width = display.w, .height = display.h,
.vmemsz = sizeof(vmem),
};
}
static void gpu_fbdraw(AM_GPU_FBDRAW_T *draw) {
int x = draw->x, y = draw->y, w = draw->w, h = draw->h;
int W = display.w, H = display.h;
uint32_t *pixels = draw->pixels;
int len = (x + w >= W) ? W - x : w;
for (int j = 0; j < h; j ++, pixels += w) {
if (y + j < H) {
struct pixel *px = &fb[x + (j + y) * W];
for (int i = 0; i < len; i ++, px ++) {
uint32_t p = pixels[i];
*px = (struct pixel) { .r = R(p), .g = G(p), .b = B(p) };
}
}
}
}
static void gpu_status(AM_GPU_STATUS_T *stat) {
stat->ready = true;
}
static void gpu_memcpy(AM_GPU_MEMCPY_T *params) {
char *src = params->src, *dst = to_host(params->dest);
for (int i = 0; i < params->size; i++)
dst[i] = src[i];
}
static void *vbuf_alloc(int size) {
void *ret = vbuf_head;
vbuf_head += size;
panic_on(vbuf_head > vbuf + sizeof(vbuf), "no memory");
for (int i = 0; i < size; i++)
((char *)ret)[i] = 0;
return ret;
}
static struct pixel *render(struct gpu_canvas *cv, struct gpu_canvas *parent, struct pixel *px) {
struct pixel *px_local;
int W = parent->w, w, h;
switch (cv->type) {
case AM_GPU_TEXTURE: {
w = cv->texture.w; h = cv->texture.h;
px_local = to_host(cv->texture.pixels);
break;
}
case AM_GPU_SUBTREE: {
w = cv->w; h = cv->h;
px_local = vbuf_alloc(w * h * sizeof(struct pixel));
for (struct gpu_canvas *ch = to_host(cv->child); ch; ch = to_host(ch->sibling)) {
render(ch, cv, px_local);
}
break;
}
default:
panic("invalid node");
}
// draw local canvas (w * h) -> px (x1, y1) - (x1 + w1, y1 + h1)
for (int i = 0; i < cv->w1; i++)
for (int j = 0; j < cv->h1; j++) {
int x = cv->x1 + i, y = cv->y1 + j;
px[W * y + x] = px_local[w * (j * h / cv->h1) + (i * w / cv->w1)];
}
return 0;
}
static void gpu_render(AM_GPU_RENDER_T *ren) {
vbuf_head = vbuf;
render(to_host(ren->root), &display, fb);
}
// Disk (ATA0)
// ====================================================
#define BLKSZ 512
#define DISKSZ (64 << 20)
static void disk_config(AM_DISK_CONFIG_T *cfg) {
cfg->present = true;
cfg->blksz = BLKSZ;
cfg->blkcnt = DISKSZ / BLKSZ;
}
static void disk_status(AM_DISK_STATUS_T *status) {
status->ready = true;
}
static inline void wait_disk(void) {
while ((inb(0x1f7) & 0xc0) != 0x40);
}
static void disk_blkio(AM_DISK_BLKIO_T *bio) {
uint32_t blkno = bio->blkno, remain = bio->blkcnt;
uint32_t *ptr = bio->buf;
for (remain = bio->blkcnt; remain; remain--, blkno++) {
wait_disk();
outb(0x1f2, 1);
outb(0x1f3, blkno);
outb(0x1f4, blkno >> 8);
outb(0x1f5, blkno >> 16);
outb(0x1f6, (blkno >> 24) | 0xe0);
outb(0x1f7, bio->write? 0x30 : 0x20);
wait_disk();
if (bio->write) {
for (int i = 0; i < BLKSZ / 4; i ++)
outl(0x1f0, *ptr++);
} else {
for (int i = 0; i < BLKSZ / 4; i ++)
*ptr++ = inl(0x1f0);
}
}
}
// ====================================================
static void audio_config(AM_AUDIO_CONFIG_T *cfg) { cfg->present = false; }
static void net_config(AM_NET_CONFIG_T *cfg) { cfg->present = false; }
static void fail(void *buf) { panic("access nonexist register"); }
typedef void (*handler_t)(void *buf);
static void *lut[128] = {
[AM_UART_CONFIG ] = uart_config,
[AM_UART_TX ] = uart_tx,
[AM_UART_RX ] = uart_rx,
[AM_TIMER_CONFIG] = timer_config,
[AM_TIMER_RTC ] = timer_rtc,
[AM_TIMER_UPTIME] = timer_uptime,
[AM_INPUT_CONFIG] = input_config,
[AM_INPUT_KEYBRD] = input_keybrd,
[AM_GPU_CONFIG ] = gpu_config,
[AM_GPU_FBDRAW ] = gpu_fbdraw,
[AM_GPU_STATUS ] = gpu_status,
[AM_GPU_MEMCPY ] = gpu_memcpy,
[AM_GPU_RENDER ] = gpu_render,
[AM_AUDIO_CONFIG] = audio_config,
[AM_DISK_CONFIG ] = disk_config,
[AM_DISK_STATUS ] = disk_status,
[AM_DISK_BLKIO ] = disk_blkio,
[AM_NET_CONFIG ] = net_config,
};
bool ioe_init() {
panic_on(cpu_current() != 0, "init IOE in non-bootstrap CPU");
for (int i = 0; i < LENGTH(lut); i++)
if (!lut[i]) lut[i] = fail;
uart_init();
timer_init();
gpu_init();
return true;
}
void ioe_read (int reg, void *buf) { ((handler_t)lut[reg])(buf); }
void ioe_write(int reg, void *buf) { ((handler_t)lut[reg])(buf); }
// LAPIC/IOAPIC (from xv6)
#define ID (0x0020/4) // ID
#define VER (0x0030/4) // Version
#define TPR (0x0080/4) // Task Priority
#define EOI (0x00B0/4) // EOI
#define SVR (0x00F0/4) // Spurious Interrupt Vector
#define ENABLE 0x00000100 // Unit Enable
#define ESR (0x0280/4) // Error Status
#define ICRLO (0x0300/4) // Interrupt Command
#define INIT 0x00000500 // INIT/RESET
#define STARTUP 0x00000600 // Startup IPI
#define DELIVS 0x00001000 // Delivery status
#define ASSERT 0x00004000 // Assert interrupt (vs deassert)
#define DEASSERT 0x00000000
#define LEVEL 0x00008000 // Level triggered
#define BCAST 0x00080000 // Send to all APICs, including self.
#define BUSY 0x00001000
#define FIXED 0x00000000
#define ICRHI (0x0310/4) // Interrupt Command [63:32]
#define TIMER (0x0320/4) // Local Vector Table 0 (TIMER)
#define X1 0x0000000B // divide counts by 1
#define PERIODIC 0x00020000 // Periodic
#define PCINT (0x0340/4) // Performance Counter LVT
#define LINT0 (0x0350/4) // Local Vector Table 1 (LINT0)
#define LINT1 (0x0360/4) // Local Vector Table 2 (LINT1)
#define ERROR (0x0370/4) // Local Vector Table 3 (ERROR)
#define MASKED 0x00010000 // Interrupt masked
#define TICR (0x0380/4) // Timer Initial Count
#define TCCR (0x0390/4) // Timer Current Count
#define TDCR (0x03E0/4) // Timer Divide Configuration
#define IOAPIC_ADDR 0xFEC00000 // Default physical address of IO APIC
#define REG_ID 0x00 // Register index: ID
#define REG_VER 0x01 // Register index: version
#define REG_TABLE 0x10 // Redirection table base
#define INT_DISABLED 0x00010000 // Interrupt disabled
#define INT_LEVEL 0x00008000 // Level-triggered (vs edge-)
#define INT_ACTIVELOW 0x00002000 // Active low (vs high)
#define INT_LOGICAL 0x00000800 // Destination is CPU id (vs APIC ID)
volatile unsigned int *__am_lapic = NULL; // Initialized in mp.c
struct IOAPIC {
uint32_t reg, pad[3], data;
} __attribute__((packed));
typedef struct IOAPIC IOAPIC;
static volatile IOAPIC *ioapic;
static void lapicw(int index, int value) {
__am_lapic[index] = value;
__am_lapic[ID];
}
void __am_percpu_initlapic(void) {
lapicw(SVR, ENABLE | (T_IRQ0 + IRQ_SPURIOUS));
lapicw(TDCR, X1);
lapicw(TIMER, PERIODIC | (T_IRQ0 + IRQ_TIMER));
lapicw(TICR, 10000000);
lapicw(LINT0, MASKED);
lapicw(LINT1, MASKED);
if (((__am_lapic[VER]>>16) & 0xFF) >= 4)
lapicw(PCINT, MASKED);
lapicw(ERROR, T_IRQ0 + IRQ_ERROR);
lapicw(ESR, 0);
lapicw(ESR, 0);
lapicw(EOI, 0);
lapicw(ICRHI, 0);
lapicw(ICRLO, BCAST | INIT | LEVEL);
while(__am_lapic[ICRLO] & DELIVS) ;
lapicw(TPR, 0);
}
void __am_lapic_eoi(void) {
if (__am_lapic)
lapicw(EOI, 0);
}
void __am_lapic_bootap(uint32_t apicid, void *addr) {
int i;
uint16_t *wrv;
outb(0x70, 0xF);
outb(0x71, 0x0A);
wrv = (unsigned short*)((0x40<<4 | 0x67));
wrv[0] = 0;
wrv[1] = (uintptr_t)addr >> 4;
lapicw(ICRHI, apicid<<24);
lapicw(ICRLO, INIT | LEVEL | ASSERT);
lapicw(ICRLO, INIT | LEVEL);
for (i = 0; i < 2; i++){
lapicw(ICRHI, apicid<<24);
lapicw(ICRLO, STARTUP | ((uintptr_t)addr>>12));
}
}
static unsigned int ioapicread(int reg) {
ioapic->reg = reg;
return ioapic->data;
}
static void ioapicwrite(int reg, unsigned int data) {
ioapic->reg = reg;
ioapic->data = data;
}
void __am_ioapic_init(void) {
int i, maxintr;
ioapic = (volatile IOAPIC*)IOAPIC_ADDR;
maxintr = (ioapicread(REG_VER) >> 16) & 0xFF;
for (i = 0; i <= maxintr; i++){
ioapicwrite(REG_TABLE+2*i, INT_DISABLED | (T_IRQ0 + i));
ioapicwrite(REG_TABLE+2*i+1, 0);
}
}
void __am_ioapic_enable(int irq, int cpunum) {
ioapicwrite(REG_TABLE+2*irq, T_IRQ0 + irq);
ioapicwrite(REG_TABLE+2*irq+1, cpunum << 24);
}

55
am/src/x86/qemu/mpe.c Normal file
View file

@ -0,0 +1,55 @@
#include "x86-qemu.h"
struct cpu_local __am_cpuinfo[MAX_CPU] = {};
static void (* volatile user_entry)();
static int ap_ready = 0;
static void call_user_entry() {
user_entry();
panic("MPE entry should not return");
}
bool mpe_init(void (*entry)()) {
user_entry = entry;
boot_record()->jmp_code = 0x000bfde9; // (16-bit) jmp (0x7c00)
for (int cpu = 1; cpu < __am_ncpu; cpu++) {
boot_record()->is_ap = 1;
__am_lapic_bootap(cpu, (void *)boot_record());
while (xchg(&ap_ready, 0) != 1) {
pause();
}
}
call_user_entry();
return true;
}
static void othercpu_entry() {
__am_percpu_init();
xchg(&ap_ready, 1);
call_user_entry();
}
void __am_othercpu_entry() {
stack_switch_call(stack_top(&CPU->stack), othercpu_entry, 0);
}
int cpu_count() {
return __am_ncpu;
}
int cpu_current(void) {
return __am_lapic[8] >> 24;
}
int atomic_xchg(int *addr, int newval) {
return xchg(addr, newval);
}
void __am_stop_the_world() {
boot_record()->jmp_code = 0x0000feeb; // (16-bit) jmp .
for (int cpu_ = 0; cpu_ < __am_ncpu; cpu_++) {
if (cpu_ != cpu_current()) {
__am_lapic_bootap(cpu_, (void *)boot_record());
}
}
}

View file

@ -0,0 +1,7 @@
#include "x86-qemu.h"
.globl _start
_start:
pushl $MAINARG_ADDR
pushl $0
jmp _start_c

69
am/src/x86/qemu/start64.S Normal file
View file

@ -0,0 +1,69 @@
#include <x86.h>
#include "x86-qemu.h"
.code32
.globl _start
_start:
movl $(PDPT_ADDR | PTE_P | PTE_W), %eax
cmpl (PML4_ADDR), %eax
je .long_mode_init
movl $(PDPT_ADDR | PTE_P | PTE_W), %eax
movl %eax, (PML4_ADDR)
movl $0, %ecx
movl $512, %esi // 512 pages
// |
.loop: // x
movl %ecx, %eax // |
shll $30, %eax // |
orl $(PTE_P | PTE_W | PTE_PS), %eax // 1 GiB page
movl %eax, PDPT_ADDR(, %ecx, 8)
movl %ecx, %eax
shrl $2, %eax
movl %eax, PDPT_ADDR + 4(, %ecx, 8)
inc %ecx
cmp %esi, %ecx
jne .loop
.long_mode_init:
movl $PML4_ADDR, %eax
movl %eax, %cr3 // %cr3 = PML4 base
movl $CR4_PAE, %eax
movl %eax, %cr4 // %cr4.PAE = 1
movl $0xc0000080, %ecx
rdmsr
orl $0x100, %eax
wrmsr // %EFER.LME = 1
movl %cr0, %eax
orl $CR0_PG, %eax
movl %eax, %cr0 // %cr0.PG = 1
lgdt gdt_ptr // bootstrap GDT
ljmp $8, $_start64 // should not return
.code64
_start64:
movw $0, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
movw %ax, %fs
movw %ax, %gs
movq $MAINARG_ADDR, %rdi
pushq $0
jmp _start_c
.align 16
gdt_ptr:
.word gdt64_end - gdt64_begin - 1
.quad gdt64_begin
gdt64_begin:
.long 0x00000000 // 0: null desc
.long 0x00000000
.long 0x00000000 // 1: code
.long 0x00209800
gdt64_end:

99
am/src/x86/qemu/trap32.S Normal file
View file

@ -0,0 +1,99 @@
#include "x86-qemu.h"
.globl __amkcontext_start
__amkcontext_start:
// eax = arg, ebx = entry
pushl %eax
pushl $__am_panic_on_return
jmpl *%ebx
trap:
cli
subl $20, %esp
pushl %ebp
pushl %edi
pushl %esi
pushl $0
pushl %edx
pushl %ecx
pushl %ebx
pushl %eax
movw %ds, %ax
pushl %eax
pushl $0
movw $KSEL(SEG_KDATA), %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
pushl %esp
call __am_irq_handle
.globl __am_iret
__am_iret:
addl $4, %esp
popl %eax
movl %eax, %esp
addl $4, %esp
popl %eax
movw %ax, %ds
movw %ax, %es
cmpw $KSEL(SEG_KCODE), 36(%esp)
je .kernel_iret
.user_iret:
popl %eax
popl %ebx
popl %ecx
popl %edx
addl $4, %esp
popl %esi
popl %edi
popl %ebp
iret
.kernel_iret:
popl %eax
popl %ebx
popl %ecx
popl %edx
addl $4, %esp
/* stack frame:
28 ss
24 esp (not popped by iret when returning to ring0)
20 eflags ---> move to new-esp
16 cs
12 eip
8 ebp
4 edi
0 esi <--- %esp
*/
movl %esp, %ebp
movl 24(%ebp), %edi // %edi is new-esp
movl 20(%ebp), %esi; movl %esi, -4(%edi)
movl 16(%ebp), %esi; movl %esi, -8(%edi)
movl 12(%ebp), %esi; movl %esi, -12(%edi)
movl 8(%ebp), %esi; movl %esi, -16(%edi)
movl 4(%ebp), %esi; movl %esi, -20(%edi)
movl 0(%ebp), %esi; movl %esi, -24(%edi)
leal -24(%edi), %esp
popl %esi
popl %edi
popl %ebp
iret
#define NOERR push $0
#define ERR
#define IRQ_DEF(id, dpl, err) \
.globl __am_irq##id; __am_irq##id: cli; err; push $id; jmp trap;
IRQS(IRQ_DEF)
.globl __am_irqall; __am_irqall: cli; push $0; push $-1; jmp trap;

61
am/src/x86/qemu/trap64.S Normal file
View file

@ -0,0 +1,61 @@
#include "x86-qemu.h"
.globl __amkcontext_start
__amkcontext_start:
// rdi = arg, rsi = entry
pushq $__am_panic_on_return
jmpq *%rsi
trap:
cli
subq $48, %rsp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %r11
pushq %r10
pushq %r9
pushq %r8
pushq %rdi
pushq %rsi
pushq %rbp
pushq %rdx
pushq %rcx
pushq %rbx
pushq %rax
pushq $0 // cr3, saved in __am_irq_handle
movq %rsp, %rdi
call __am_irq_handle
.globl __am_iret
__am_iret:
movq %rdi, %rsp
movq 160(%rsp), %rax
movw %ax, %ds
movw %ax, %es
addq $8, %rsp
popq %rax
popq %rbx
popq %rcx
popq %rdx
popq %rbp
popq %rsi
popq %rdi
popq %r8
popq %r9
popq %r10
popq %r11
popq %r12
popq %r13
popq %r14
popq %r15
iretq
#define NOERR push $0
#define ERR
#define IRQ_DEF(id, dpl, err) \
.globl __am_irq##id; __am_irq##id: cli; err; push $id; jmp trap;
IRQS(IRQ_DEF)
.globl __am_irqall; __am_irqall: cli; push $0; push $-1; jmp trap;

114
am/src/x86/qemu/trm.c Normal file
View file

@ -0,0 +1,114 @@
#include "x86-qemu.h"
Area heap = {};
volatile uint32_t *__am_lapic;
int __am_ncpu = 0;
struct cpu_local __am_cpuinfo[MAX_CPU];
int main(const char *args);
static void call_main(const char *args) {
halt(main(args));
}
void _start_c(char *args) {
if (boot_record()->is_ap) {
__am_othercpu_entry();
} else {
__am_bootcpu_init();
stack_switch_call(stack_top(&CPU->stack), call_main, (uintptr_t)args);
}
}
void __am_bootcpu_init() {
heap = __am_heap_init();
__am_lapic_init();
__am_ioapic_init();
__am_percpu_init();
}
void __am_percpu_init() {
__am_percpu_initgdt();
__am_percpu_initlapic();
__am_percpu_initirq();
}
void putch(char ch) {
#define COM1 0x3f8
outb(COM1, ch);
}
void halt(int code) {
const char *hex = "0123456789abcdef";
const char *fmt = "CPU #$ Halt (40).\n";
cli();
__am_stop_the_world();
for (const char *p = fmt; *p; p++) {
char ch = *p;
switch (ch) {
case '$':
putch(hex[cpu_current()]);
break;
case '0': case '4':
putch(hex[(code >> (ch - '0')) & 0xf]);
break;
default:
putch(ch);
}
}
outw(0x604, 0x2000); // offer of qemu :)
while (1) hlt();
}
Area __am_heap_init() {
extern char end;
outb(0x70, 0x34);
uint32_t lo = inb(0x71);
outb(0x70, 0x35);
uint32_t hi = inb(0x71) + 1;
return RANGE(ROUNDUP(&end, 1 << 20), (uintptr_t)((lo | hi << 8) << 16));
}
void __am_lapic_init() {
for (char *st = (char *)0xf0000; st != (char *)0xffffff; st ++) {
if (*(volatile uint32_t *)st == 0x5f504d5f) {
uint32_t mpconf_ptr = ((volatile MPDesc *)st)->conf;
MPConf *conf = (void *)((uintptr_t)(mpconf_ptr));
__am_lapic = (void *)((uintptr_t)(conf->lapicaddr));
for (volatile char *ptr = (char *)(conf + 1);
ptr < (char *)conf + conf->length; ptr += 8) {
if (*ptr == '\0') {
ptr += 12;
panic_on(++__am_ncpu > MAX_CPU, "cannot support > MAX_CPU processors");
}
}
return;
}
}
bug();
}
void __am_percpu_initgdt() {
#if __x86_64__
SegDesc *gdt = CPU->gdt;
TSS64 *tss = &CPU->tss;
gdt[SEG_KCODE] = SEG64(STA_X | STA_R, DPL_KERN);
gdt[SEG_KDATA] = SEG64(STA_W, DPL_KERN);
gdt[SEG_UCODE] = SEG64(STA_X | STA_R, DPL_USER);
gdt[SEG_UDATA] = SEG64(STA_W, DPL_USER);
gdt[SEG_TSS] = SEG16(STS_T32A, tss, sizeof(*tss)-1, DPL_KERN);
bug_on((uintptr_t)tss >> 32);
set_gdt(gdt, sizeof(gdt[0]) * (NR_SEG + 1));
set_tr(KSEL(SEG_TSS));
#else
SegDesc *gdt = CPU->gdt;
TSS32 *tss = &CPU->tss;
gdt[SEG_KCODE] = SEG32(STA_X | STA_R, 0, 0xffffffff, DPL_KERN);
gdt[SEG_KDATA] = SEG32(STA_W, 0, 0xffffffff, DPL_KERN);
gdt[SEG_UCODE] = SEG32(STA_X | STA_R, 0, 0xffffffff, DPL_USER);
gdt[SEG_UDATA] = SEG32(STA_W, 0, 0xffffffff, DPL_USER);
gdt[SEG_TSS] = SEG16(STS_T32A, tss, sizeof(*tss)-1, DPL_KERN);
set_gdt(gdt, sizeof(gdt[0]) * NR_SEG);
set_tr(KSEL(SEG_TSS));
#endif
}

181
am/src/x86/qemu/vme.c Normal file
View file

@ -0,0 +1,181 @@
#include "x86-qemu.h"
const struct mmu_config mmu = {
.pgsize = 4096,
#if __x86_64__
.ptlevels = 4,
.pgtables = {
{ "CR3", 0x000000000000, 0, 0 },
{ "PML4", 0xff8000000000, 39, 9 },
{ "PDPT", 0x007fc0000000, 30, 9 },
{ "PD", 0x00003fe00000, 21, 9 },
{ "PT", 0x0000001ff000, 12, 9 },
},
#else
.ptlevels = 2,
.pgtables = {
{ "CR3", 0x00000000, 0, 0 },
{ "PD", 0xffc00000, 22, 10 },
{ "PT", 0x003ff000, 12, 10 },
},
#endif
};
static const struct vm_area vm_areas[] = {
#ifdef __x86_64__
{ RANGE(0x100000000000, 0x108000000000), 0 }, // 512 GiB user space
{ RANGE(0x000000000000, 0x008000000000), 1 }, // 512 GiB kernel
#else
{ RANGE( 0x40000000, 0x80000000), 0 }, // 1 GiB user space
{ RANGE( 0x00000000, 0x40000000), 1 }, // 1 GiB kernel
{ RANGE( 0xfd000000, 0x00000000), 1 }, // memory-mapped I/O
#endif
};
#define uvm_area (vm_areas[0].area)
static uintptr_t *kpt;
static void *(*pgalloc)(int size);
static void (*pgfree)(void *);
static void *pgallocz() {
uintptr_t *base = pgalloc(mmu.pgsize);
panic_on(!base, "cannot allocate page");
for (int i = 0; i < mmu.pgsize / sizeof(uintptr_t); i++) {
base[i] = 0;
}
return base;
}
static int indexof(uintptr_t addr, const struct ptinfo *info) {
return ((uintptr_t)addr & info->mask) >> info->shift;
}
static uintptr_t baseof(uintptr_t addr) {
return addr & ~(mmu.pgsize - 1);
}
static uintptr_t *ptwalk(AddrSpace *as, uintptr_t addr, int flags) {
uintptr_t cur = (uintptr_t)&as->ptr;
for (int i = 0; i <= mmu.ptlevels; i++) {
const struct ptinfo *ptinfo = &mmu.pgtables[i];
uintptr_t *pt = (uintptr_t *)cur, next_page;
int index = indexof(addr, ptinfo);
if (i == mmu.ptlevels) return &pt[index];
if (!(pt[index] & PTE_P)) {
next_page = (uintptr_t)pgallocz();
pt[index] = next_page | PTE_P | flags;
} else {
next_page = baseof(pt[index]);
}
cur = next_page;
}
bug();
}
static void teardown(int level, uintptr_t *pt) {
if (level > mmu.ptlevels) return;
for (int index = 0; index < (1 << mmu.pgtables[level].bits); index++) {
if ((pt[index] & PTE_P) && (pt[index] & PTE_U)) {
teardown(level + 1, (void *)baseof(pt[index]));
}
}
if (level >= 1) {
pgfree(pt);
}
}
bool vme_init(void *(*_pgalloc)(int size), void (*_pgfree)(void *)) {
panic_on(cpu_current() != 0, "init VME in non-bootstrap CPU");
pgalloc = _pgalloc;
pgfree = _pgfree;
#if __x86_64__
kpt = (void *)PML4_ADDR;
#else
AddrSpace as;
as.ptr = NULL;
for (int i = 0; i < LENGTH(vm_areas); i++) {
const struct vm_area *vma = &vm_areas[i];
if (vma->kernel) {
for (uintptr_t cur = (uintptr_t)vma->area.start;
cur != (uintptr_t)vma->area.end;
cur += mmu.pgsize) {
*ptwalk(&as, cur, PTE_W) = cur | PTE_P | PTE_W;
}
}
}
kpt = (void *)baseof((uintptr_t)as.ptr);
#endif
set_cr3(kpt);
set_cr0(get_cr0() | CR0_PG);
return true;
}
void protect(AddrSpace *as) {
uintptr_t *upt = pgallocz();
for (int i = 0; i < LENGTH(vm_areas); i++) {
const struct vm_area *vma = &vm_areas[i];
if (vma->kernel) {
const struct ptinfo *info = &mmu.pgtables[1]; // level-1 page table
for (uintptr_t cur = (uintptr_t)vma->area.start;
cur != (uintptr_t)vma->area.end;
cur += (1L << info->shift)) {
int index = indexof(cur, info);
upt[index] = kpt[index];
}
}
}
as->pgsize = mmu.pgsize;
as->area = uvm_area;
as->ptr = (void *)((uintptr_t)upt | PTE_P | PTE_U);
}
void unprotect(AddrSpace *as) {
teardown(0, (void *)&as->ptr);
}
void map(AddrSpace *as, void *va, void *pa, int prot) {
panic_on(!IN_RANGE(va, uvm_area), "mapping an invalid address");
panic_on((uintptr_t)va != ROUNDDOWN(va, mmu.pgsize) ||
(uintptr_t)pa != ROUNDDOWN(pa, mmu.pgsize), "non-page-boundary address");
uintptr_t *ptentry = ptwalk(as, (uintptr_t)va, PTE_W | PTE_U);
if (prot == MMAP_NONE) {
panic_on(!(*ptentry & PTE_P), "unmapping a non-mapped page");
*ptentry = 0;
} else {
panic_on(*ptentry & PTE_P, "remapping a mapped page");
uintptr_t pte = (uintptr_t)pa | PTE_P | PTE_U | ((prot & MMAP_WRITE) ? PTE_W : 0);
*ptentry = pte;
}
ptwalk(as, (uintptr_t)va, PTE_W | PTE_U);
}
Context *ucontext(AddrSpace *as, Area kstack, void *entry) {
Context *ctx = kstack.end - sizeof(Context);
*ctx = (Context) { 0 };
#if __x86_64__
ctx->cs = USEL(SEG_UCODE);
ctx->ss = USEL(SEG_UDATA);
ctx->rip = (uintptr_t)entry;
ctx->rflags = FL_IF;
ctx->rsp = (uintptr_t)uvm_area.end;
ctx->rsp0 = (uintptr_t)kstack.end;
#else
ctx->cs = USEL(SEG_UCODE);
ctx->ds = USEL(SEG_UDATA);
ctx->ss3 = USEL(SEG_UDATA);
ctx->eip = (uintptr_t)entry;
ctx->eflags = FL_IF;
ctx->esp = (uintptr_t)uvm_area.end;
ctx->esp0 = (uintptr_t)kstack.end;
#endif
ctx->cr3 = as->ptr;
return ctx;
}

100
am/src/x86/qemu/x86-qemu.h Normal file
View file

@ -0,0 +1,100 @@
#include <x86.h>
#define PML4_ADDR 0x1000
#define PDPT_ADDR 0x2000
#define NR_SEG 6 // GDT size
#define SEG_KCODE 1 // Kernel code
#define SEG_KDATA 2 // Kernel data/stack
#define SEG_UCODE 3 // User code
#define SEG_UDATA 4 // User data/stack
#define SEG_TSS 5 // Global unique task state segement
#define NR_IRQ 256 // IDT size
#ifndef __ASSEMBLER__
#include <am.h>
#include <klib-macros.h>
struct kernel_stack {
uint8_t stack[8192];
};
static inline void *stack_top(struct kernel_stack *stk) {
return stk->stack + sizeof(stk->stack);
}
struct mmu_config {
int ptlevels, pgsize;
struct ptinfo {
const char *name;
uintptr_t mask;
int shift, bits;
} pgtables[];
};
struct vm_area {
Area area;
int kernel;
};
void __am_iret(Context *ctx);
struct cpu_local {
AddrSpace *uvm;
#if __x86_64__
SegDesc gdt[NR_SEG + 1];
TSS64 tss;
#else
SegDesc gdt[NR_SEG];
TSS32 tss;
#endif
struct kernel_stack stack;
};
#if __x86_64__
struct trap_frame {
Context saved_context;
uint64_t irq, errcode;
uint64_t rip, cs, rflags, rsp, ss;
};
#else
struct trap_frame {
Context saved_context;
uint32_t irq, errcode;
uint32_t eip, cs, eflags, esp, ss;
};
#endif
extern volatile uint32_t *__am_lapic;
extern int __am_ncpu;
extern struct cpu_local __am_cpuinfo[MAX_CPU];
#define CPU (&__am_cpuinfo[cpu_current()])
#define bug_on(cond) \
do { \
if (cond) panic("internal error (likely a bug in AM)"); \
} while (0)
#define bug() bug_on(1)
// apic utils
void __am_lapic_eoi();
void __am_ioapic_init();
void __am_lapic_bootap(uint32_t cpu, void *address);
void __am_ioapic_enable(int irq, int cpu);
// x86-specific operations
void __am_bootcpu_init();
void __am_percpu_init();
Area __am_heap_init();
void __am_lapic_init();
void __am_othercpu_entry();
void __am_percpu_initirq();
void __am_percpu_initgdt();
void __am_percpu_initlapic();
void __am_stop_the_world();
#endif

3
klib/Makefile Normal file
View file

@ -0,0 +1,3 @@
NAME = klib
SRCS = $(shell find src/ -name "*.c")
include $(AM_HOME)/Makefile

View file

@ -0,0 +1,39 @@
#ifndef KLIB_MACROS_H__
#define KLIB_MACROS_H__
#define ROUNDUP(a, sz) ((((uintptr_t)a) + (sz) - 1) & ~((sz) - 1))
#define ROUNDDOWN(a, sz) ((((uintptr_t)a)) & ~((sz) - 1))
#define LENGTH(arr) (sizeof(arr) / sizeof((arr)[0]))
#define RANGE(st, ed) (Area) { .start = (void *)(st), .end = (void *)(ed) }
#define IN_RANGE(ptr, area) ((area).start <= (ptr) && (ptr) < (area).end)
#define STRINGIFY(s) #s
#define TOSTRING(s) STRINGIFY(s)
#define _CONCAT(x, y) x ## y
#define CONCAT(x, y) _CONCAT(x, y)
#define putstr(s) \
({ for (const char *p = s; *p; p++) putch(*p); })
#define io_read(reg) \
({ reg##_T __io_param; \
ioe_read(reg, &__io_param); \
__io_param; })
#define io_write(reg, ...) \
({ reg##_T __io_param = (reg##_T) { __VA_ARGS__ }; \
ioe_write(reg, &__io_param); })
#define static_assert(const_cond) \
static char CONCAT(_static_assert_, __LINE__) [(const_cond) ? 1 : -1] __attribute__((unused))
#define panic_on(cond, s) \
({ if (cond) { \
putstr("AM Panic: "); putstr(s); \
putstr(" @ " __FILE__ ":" TOSTRING(__LINE__) " \n"); \
halt(1); \
} })
#define panic(s) panic_on(1, s)
#endif

58
klib/include/klib.h Normal file
View file

@ -0,0 +1,58 @@
#ifndef KLIB_H__
#define KLIB_H__
#include <am.h>
#include <stddef.h>
#include <stdarg.h>
#ifdef __cplusplus
extern "C" {
#endif
//#define __NATIVE_USE_KLIB__
// string.h
void *memset (void *s, int c, size_t n);
void *memcpy (void *dst, const void *src, size_t n);
void *memmove (void *dst, const void *src, size_t n);
int memcmp (const void *s1, const void *s2, size_t n);
size_t strlen (const char *s);
char *strcat (char *dst, const char *src);
char *strcpy (char *dst, const char *src);
char *strncpy (char *dst, const char *src, size_t n);
int strcmp (const char *s1, const char *s2);
int strncmp (const char *s1, const char *s2, size_t n);
// stdlib.h
int atoi (const char *nptr);
void srand (unsigned int seed);
int rand (void);
void *malloc (size_t size);
void free (void *ptr);
// stdio.h
int printf (const char *format, ...);
int sprintf (char *str, const char *format, ...);
int snprintf (char *str, size_t size, const char *format, ...);
int vsprintf (char *str, const char *format, va_list ap);
int vsnprintf (char *str, size_t size, const char *format, va_list ap);
int sscanf (const char *str, const char *format, ...);
// assert.h
#ifdef NDEBUG
#define assert(ignore) ((void)0)
#else
#define assert(cond) \
do { \
if (!(cond)) { \
printf("Assertion fail at %s:%d\n", __FILE__, __LINE__); \
halt(1); \
} \
} while (0)
#endif
#ifdef __cplusplus
}
#endif
#endif

19
klib/src/cpp.c Normal file
View file

@ -0,0 +1,19 @@
#include <am.h>
#include <klib.h>
#ifndef __ISA_NATIVE__
void __dso_handle() {
}
void __cxa_guard_acquire() {
}
void __cxa_guard_release() {
}
void __cxa_atexit() {
assert(0);
}
#endif

707
klib/src/int64.c Normal file
View file

@ -0,0 +1,707 @@
// divmoddi4.c from The LLVM Compiler Infrastructure
/* Assumption: Signed integral is 2's complement. */
/* Assumption: Right shift of signed negative is arithmetic shift. */
/* Assumption: Endianness is little or big (not mixed). */
#if defined(__ELF__)
#define FNALIAS(alias_name, original_name) \
void alias_name() __attribute__((__alias__(#original_name)))
#define COMPILER_RT_ALIAS(aliasee) __attribute__((__alias__(#aliasee)))
#else
#define FNALIAS(alias, name) _Pragma("GCC error(\"alias unsupported on this file format\")")
#define COMPILER_RT_ALIAS(aliasee) _Pragma("GCC error(\"alias unsupported on this file format\")")
#endif
/* ABI macro definitions */
#if __ARM_EABI__
# ifdef COMPILER_RT_ARMHF_TARGET
# define COMPILER_RT_ABI
# else
# define COMPILER_RT_ABI __attribute__((__pcs__("aapcs")))
# endif
#else
# define COMPILER_RT_ABI
#endif
#define AEABI_RTABI __attribute__((__pcs__("aapcs")))
#ifdef _MSC_VER
#define ALWAYS_INLINE __forceinline
#define NOINLINE __declspec(noinline)
#define NORETURN __declspec(noreturn)
#define UNUSED
#else
#define ALWAYS_INLINE __attribute__((always_inline))
#define NOINLINE __attribute__((noinline))
#define NORETURN __attribute__((noreturn))
#define UNUSED __attribute__((unused))
#endif
#if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
/*
* Kernel and boot environment can't use normal headers,
* so use the equivalent system headers.
*/
# include <machine/limits.h>
# include <sys/stdint.h>
# include <sys/types.h>
#else
/* Include the standard compiler builtin headers we use functionality from. */
# include <limits.h>
# include <stdint.h>
# include <stdbool.h>
# include <float.h>
#endif
/* Include the commonly used internal type definitions. */
#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
defined(__ORDER_LITTLE_ENDIAN__)
/* Clang and GCC provide built-in endianness definitions. */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 0
#define _YUGA_BIG_ENDIAN 1
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 1
#define _YUGA_BIG_ENDIAN 0
#endif /* __BYTE_ORDER__ */
#else /* Compilers other than Clang or GCC. */
#if defined(__SVR4) && defined(__sun)
#include <sys/byteorder.h>
#if defined(_BIG_ENDIAN)
#define _YUGA_LITTLE_ENDIAN 0
#define _YUGA_BIG_ENDIAN 1
#elif defined(_LITTLE_ENDIAN)
#define _YUGA_LITTLE_ENDIAN 1
#define _YUGA_BIG_ENDIAN 0
#else /* !_LITTLE_ENDIAN */
#error "unknown endianness"
#endif /* !_LITTLE_ENDIAN */
#endif /* Solaris and AuroraUX. */
/* .. */
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
defined(__minix)
#include <sys/endian.h>
#if _BYTE_ORDER == _BIG_ENDIAN
#define _YUGA_LITTLE_ENDIAN 0
#define _YUGA_BIG_ENDIAN 1
#elif _BYTE_ORDER == _LITTLE_ENDIAN
#define _YUGA_LITTLE_ENDIAN 1
#define _YUGA_BIG_ENDIAN 0
#endif /* _BYTE_ORDER */
#endif /* *BSD */
#if defined(__OpenBSD__)
#include <machine/endian.h>
#if _BYTE_ORDER == _BIG_ENDIAN
#define _YUGA_LITTLE_ENDIAN 0
#define _YUGA_BIG_ENDIAN 1
#elif _BYTE_ORDER == _LITTLE_ENDIAN
#define _YUGA_LITTLE_ENDIAN 1
#define _YUGA_BIG_ENDIAN 0
#endif /* _BYTE_ORDER */
#endif /* OpenBSD */
/* .. */
/* Mac OSX has __BIG_ENDIAN__ or __LITTLE_ENDIAN__ automatically set by the
* compiler (at least with GCC) */
#if defined(__APPLE__) || defined(__ellcc__ )
#ifdef __BIG_ENDIAN__
#if __BIG_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 0
#define _YUGA_BIG_ENDIAN 1
#endif
#endif /* __BIG_ENDIAN__ */
#ifdef __LITTLE_ENDIAN__
#if __LITTLE_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 1
#define _YUGA_BIG_ENDIAN 0
#endif
#endif /* __LITTLE_ENDIAN__ */
#endif /* Mac OSX */
/* .. */
#if defined(_WIN32)
#define _YUGA_LITTLE_ENDIAN 1
#define _YUGA_BIG_ENDIAN 0
#endif /* Windows */
#endif /* Clang or GCC. */
/* . */
#if !defined(_YUGA_LITTLE_ENDIAN) || !defined(_YUGA_BIG_ENDIAN)
#error Unable to determine endian
#endif /* Check we found an endianness correctly. */
/* si_int is defined in Linux sysroot's asm-generic/siginfo.h */
#ifdef si_int
#undef si_int
#endif
typedef int si_int;
typedef unsigned su_int;
typedef long long di_int;
typedef unsigned long long du_int;
typedef union
{
di_int all;
struct
{
#if _YUGA_LITTLE_ENDIAN
su_int low;
si_int high;
#else
si_int high;
su_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
}s;
} dwords;
typedef union
{
du_int all;
struct
{
#if _YUGA_LITTLE_ENDIAN
su_int low;
su_int high;
#else
su_int high;
su_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
}s;
} udwords;
#if (defined(__LP64__) || defined(__wasm__) || defined(__mips64))// || defined(__riscv)
#define CRT_HAS_128BIT
#endif
#ifdef CRT_HAS_128BIT
typedef int ti_int __attribute__ ((mode (TI)));
typedef unsigned tu_int __attribute__ ((mode (TI)));
typedef union
{
ti_int all;
struct
{
#if _YUGA_LITTLE_ENDIAN
du_int low;
di_int high;
#else
di_int high;
du_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
}s;
} twords;
typedef union
{
tu_int all;
struct
{
#if _YUGA_LITTLE_ENDIAN
du_int low;
du_int high;
#else
du_int high;
du_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
}s;
} utwords;
static __inline ti_int make_ti(di_int h, di_int l) {
twords r;
r.s.high = h;
r.s.low = l;
return r.all;
}
static __inline tu_int make_tu(du_int h, du_int l) {
utwords r;
r.s.high = h;
r.s.low = l;
return r.all;
}
#endif /* CRT_HAS_128BIT */
typedef union
{
su_int u;
float f;
} float_bits;
typedef union
{
udwords u;
double f;
} double_bits;
typedef struct
{
#if _YUGA_LITTLE_ENDIAN
udwords low;
udwords high;
#else
udwords high;
udwords low;
#endif /* _YUGA_LITTLE_ENDIAN */
} uqwords;
typedef union
{
uqwords u;
long double f;
} long_double_bits;
#if __STDC_VERSION__ >= 199901L
typedef float _Complex Fcomplex;
typedef double _Complex Dcomplex;
typedef long double _Complex Lcomplex;
#define COMPLEX_REAL(x) __real__(x)
#define COMPLEX_IMAGINARY(x) __imag__(x)
#else
typedef struct { float real, imaginary; } Fcomplex;
typedef struct { double real, imaginary; } Dcomplex;
typedef struct { long double real, imaginary; } Lcomplex;
#define COMPLEX_REAL(x) (x).real
#define COMPLEX_IMAGINARY(x) (x).imaginary
#endif
/* Include internal utility function declarations. */
/** \brief Trigger a program abort (or panic for kernel code). */
#define compilerrt_abort() compilerrt_abort_impl(__FILE__, __LINE__, __func__)
NORETURN void compilerrt_abort_impl(const char *file, int line,
const char *function);
#define COMPILE_TIME_ASSERT(expr) COMPILE_TIME_ASSERT1(expr, __COUNTER__)
#define COMPILE_TIME_ASSERT1(expr, cnt) COMPILE_TIME_ASSERT2(expr, cnt)
#define COMPILE_TIME_ASSERT2(expr, cnt) \
typedef char ct_assert_##cnt[(expr) ? 1 : -1] UNUSED
COMPILER_RT_ABI si_int __paritysi2(si_int a);
COMPILER_RT_ABI si_int __paritydi2(di_int a);
COMPILER_RT_ABI di_int __divdi3(di_int a, di_int b);
COMPILER_RT_ABI si_int __divsi3(si_int a, si_int b);
COMPILER_RT_ABI su_int __udivsi3(su_int n, su_int d);
COMPILER_RT_ABI su_int __udivmodsi4(su_int a, su_int b, su_int* rem);
COMPILER_RT_ABI du_int __udivmoddi4(du_int a, du_int b, du_int* rem);
#ifdef CRT_HAS_128BIT
COMPILER_RT_ABI si_int __clzti2(ti_int a);
COMPILER_RT_ABI tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);
#endif
/* Definitions for builtins unavailable on MSVC */
#if defined(_MSC_VER) && !defined(__clang__)
#include <intrin.h>
uint32_t __inline __builtin_ctz(uint32_t value) {
unsigned long trailing_zero = 0;
if (_BitScanForward(&trailing_zero, value))
return trailing_zero;
return 32;
}
uint32_t __inline __builtin_clz(uint32_t value) {
unsigned long leading_zero = 0;
if (_BitScanReverse(&leading_zero, value))
return 31 - leading_zero;
return 32;
}
#if defined(_M_ARM) || defined(_M_X64)
uint32_t __inline __builtin_clzll(uint64_t value) {
unsigned long leading_zero = 0;
if (_BitScanReverse64(&leading_zero, value))
return 63 - leading_zero;
return 64;
}
#else
uint32_t __inline __builtin_clzll(uint64_t value) {
if (value == 0)
return 64;
uint32_t msh = (uint32_t)(value >> 32);
uint32_t lsh = (uint32_t)(value & 0xFFFFFFFF);
if (msh != 0)
return __builtin_clz(msh);
return 32 + __builtin_clz(lsh);
}
#endif
#define __builtin_clzl __builtin_clzll
#endif /* defined(_MSC_VER) && !defined(__clang__) */
#include <am.h>
/* Returns: a / b */
COMPILER_RT_ABI di_int
__divdi3(di_int a, di_int b)
{
const int bits_in_dword_m1 = (int)(sizeof(di_int) * CHAR_BIT) - 1;
di_int s_a = a >> bits_in_dword_m1; /* s_a = a < 0 ? -1 : 0 */
di_int s_b = b >> bits_in_dword_m1; /* s_b = b < 0 ? -1 : 0 */
a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
s_a ^= s_b; /*sign of quotient */
return (__udivmoddi4(a, b, (du_int*)0) ^ s_a) - s_a; /* negate if s_a == -1 */
}
/* Returns: a / b, *rem = a % b */
COMPILER_RT_ABI di_int
__divmoddi4(di_int a, di_int b, di_int* rem)
{
di_int d = __divdi3(a,b);
*rem = a - (d*b);
return d;
}
/* Returns: a % b */
COMPILER_RT_ABI di_int
__moddi3(di_int a, di_int b)
{
const int bits_in_dword_m1 = (int)(sizeof(di_int) * CHAR_BIT) - 1;
di_int s = b >> bits_in_dword_m1; /* s = b < 0 ? -1 : 0 */
b = (b ^ s) - s; /* negate if s == -1 */
s = a >> bits_in_dword_m1; /* s = a < 0 ? -1 : 0 */
a = (a ^ s) - s; /* negate if s == -1 */
du_int r;
__udivmoddi4(a, b, &r);
return ((di_int)r ^ s) - s; /* negate if s == -1 */
}
/* Returns: a / b */
COMPILER_RT_ABI du_int
__udivdi3(du_int a, du_int b)
{
return __udivmoddi4(a, b, 0);
}
COMPILER_RT_ABI du_int
__udivmoddi4(du_int a, du_int b, du_int* rem)
{
const unsigned n_uword_bits = sizeof(su_int) * CHAR_BIT;
const unsigned n_udword_bits = sizeof(du_int) * CHAR_BIT;
udwords n;
n.all = a;
udwords d;
d.all = b;
udwords q;
udwords r;
unsigned sr;
/* special cases, X is unknown, K != 0 */
if (n.s.high == 0)
{
if (d.s.high == 0)
{
/* 0 X
* ---
* 0 X
*/
if (rem)
*rem = n.s.low % d.s.low;
return n.s.low / d.s.low;
}
/* 0 X
* ---
* K X
*/
if (rem)
*rem = n.s.low;
return 0;
}
/* n.s.high != 0 */
if (d.s.low == 0)
{
if (d.s.high == 0)
{
/* K X
* ---
* 0 0
*/
if (rem)
*rem = n.s.high % d.s.low;
return n.s.high / d.s.low;
}
/* d.s.high != 0 */
if (n.s.low == 0)
{
/* K 0
* ---
* K 0
*/
if (rem)
{
r.s.high = n.s.high % d.s.high;
r.s.low = 0;
*rem = r.all;
}
return n.s.high / d.s.high;
}
/* K K
* ---
* K 0
*/
if ((d.s.high & (d.s.high - 1)) == 0) /* if d is a power of 2 */
{
if (rem)
{
r.s.low = n.s.low;
r.s.high = n.s.high & (d.s.high - 1);
*rem = r.all;
}
return n.s.high >> __builtin_ctz(d.s.high);
}
/* K K
* ---
* K 0
*/
sr = __builtin_clz(d.s.high) - __builtin_clz(n.s.high);
/* 0 <= sr <= n_uword_bits - 2 or sr large */
if (sr > n_uword_bits - 2)
{
if (rem)
*rem = n.all;
return 0;
}
++sr;
/* 1 <= sr <= n_uword_bits - 1 */
/* q.all = n.all << (n_udword_bits - sr); */
q.s.low = 0;
q.s.high = n.s.low << (n_uword_bits - sr);
/* r.all = n.all >> sr; */
r.s.high = n.s.high >> sr;
r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
}
else /* d.s.low != 0 */
{
if (d.s.high == 0)
{
/* K X
* ---
* 0 K
*/
if ((d.s.low & (d.s.low - 1)) == 0) /* if d is a power of 2 */
{
if (rem)
*rem = n.s.low & (d.s.low - 1);
if (d.s.low == 1)
return n.all;
sr = __builtin_ctz(d.s.low);
q.s.high = n.s.high >> sr;
q.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
return q.all;
}
/* K X
* ---
* 0 K
*/
sr = 1 + n_uword_bits + __builtin_clz(d.s.low) - __builtin_clz(n.s.high);
/* 2 <= sr <= n_udword_bits - 1
* q.all = n.all << (n_udword_bits - sr);
* r.all = n.all >> sr;
*/
if (sr == n_uword_bits)
{
q.s.low = 0;
q.s.high = n.s.low;
r.s.high = 0;
r.s.low = n.s.high;
}
else if (sr < n_uword_bits) // 2 <= sr <= n_uword_bits - 1
{
q.s.low = 0;
q.s.high = n.s.low << (n_uword_bits - sr);
r.s.high = n.s.high >> sr;
r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
}
else // n_uword_bits + 1 <= sr <= n_udword_bits - 1
{
q.s.low = n.s.low << (n_udword_bits - sr);
q.s.high = (n.s.high << (n_udword_bits - sr)) |
(n.s.low >> (sr - n_uword_bits));
r.s.high = 0;
r.s.low = n.s.high >> (sr - n_uword_bits);
}
}
else
{
/* K X
* ---
* K K
*/
sr = __builtin_clz(d.s.high) - __builtin_clz(n.s.high);
/* 0 <= sr <= n_uword_bits - 1 or sr large */
if (sr > n_uword_bits - 1)
{
if (rem)
*rem = n.all;
return 0;
}
++sr;
/* 1 <= sr <= n_uword_bits */
/* q.all = n.all << (n_udword_bits - sr); */
q.s.low = 0;
if (sr == n_uword_bits)
{
q.s.high = n.s.low;
r.s.high = 0;
r.s.low = n.s.high;
}
else
{
q.s.high = n.s.low << (n_uword_bits - sr);
r.s.high = n.s.high >> sr;
r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
}
}
}
/* Not a special case
* q and r are initialized with:
* q.all = n.all << (n_udword_bits - sr);
* r.all = n.all >> sr;
* 1 <= sr <= n_udword_bits - 1
*/
su_int carry = 0;
for (; sr > 0; --sr)
{
/* r:q = ((r:q) << 1) | carry */
r.s.high = (r.s.high << 1) | (r.s.low >> (n_uword_bits - 1));
r.s.low = (r.s.low << 1) | (q.s.high >> (n_uword_bits - 1));
q.s.high = (q.s.high << 1) | (q.s.low >> (n_uword_bits - 1));
q.s.low = (q.s.low << 1) | carry;
/* carry = 0;
* if (r.all >= d.all)
* {
* r.all -= d.all;
* carry = 1;
* }
*/
const di_int s = (di_int)(d.all - r.all - 1) >> (n_udword_bits - 1);
carry = s & 1;
r.all -= d.all & s;
}
q.all = (q.all << 1) | carry;
if (rem)
*rem = r.all;
return q.all;
}
/* Returns: a % b */
COMPILER_RT_ABI du_int
__umoddi3(du_int a, du_int b)
{
du_int r;
__udivmoddi4(a, b, &r);
return r;
}
// Returns: the number of leading 0-bits
// Precondition: a != 0
COMPILER_RT_ABI si_int __clzsi2(si_int a) {
su_int x = (su_int)a;
si_int t = ((x & 0xFFFF0000) == 0) << 4; // if (x is small) t = 16 else 0
x >>= 16 - t; // x = [0 - 0xFFFF]
su_int r = t; // r = [0, 16]
// return r + clz(x)
t = ((x & 0xFF00) == 0) << 3;
x >>= 8 - t; // x = [0 - 0xFF]
r += t; // r = [0, 8, 16, 24]
// return r + clz(x)
t = ((x & 0xF0) == 0) << 2;
x >>= 4 - t; // x = [0 - 0xF]
r += t; // r = [0, 4, 8, 12, 16, 20, 24, 28]
// return r + clz(x)
t = ((x & 0xC) == 0) << 1;
x >>= 2 - t; // x = [0 - 3]
r += t; // r = [0 - 30] and is even
// return r + clz(x)
// switch (x)
// {
// case 0:
// return r + 2;
// case 1:
// return r + 1;
// case 2:
// case 3:
// return r;
// }
return r + ((2 - x) & -((x & 2) == 0));
}
// Returns: the number of trailing 0-bits
// Precondition: a != 0
COMPILER_RT_ABI si_int __ctzsi2(si_int a) {
su_int x = (su_int)a;
si_int t = ((x & 0x0000FFFF) == 0)
<< 4; // if (x has no small bits) t = 16 else 0
x >>= t; // x = [0 - 0xFFFF] + higher garbage bits
su_int r = t; // r = [0, 16]
// return r + ctz(x)
t = ((x & 0x00FF) == 0) << 3;
x >>= t; // x = [0 - 0xFF] + higher garbage bits
r += t; // r = [0, 8, 16, 24]
// return r + ctz(x)
t = ((x & 0x0F) == 0) << 2;
x >>= t; // x = [0 - 0xF] + higher garbage bits
r += t; // r = [0, 4, 8, 12, 16, 20, 24, 28]
// return r + ctz(x)
t = ((x & 0x3) == 0) << 1;
x >>= t;
x &= 3; // x = [0 - 3]
r += t; // r = [0 - 30] and is even
// return r + ctz(x)
// The branch-less return statement below is equivalent
// to the following switch statement:
// switch (x)
// {
// case 0:
// return r + 2;
// case 2:
// return r + 1;
// case 1:
// case 3:
// return r;
// }
return r + ((2 - (x >> 1)) & -((x & 1) == 0));
}

28
klib/src/stdio.c Normal file
View file

@ -0,0 +1,28 @@
#include <am.h>
#include <klib.h>
#include <klib-macros.h>
#include <stdarg.h>
#if !defined(__ISA_NATIVE__) || defined(__NATIVE_USE_KLIB__)
int printf(const char *fmt, ...) {
return 0;
}
int vsprintf(char *out, const char *fmt, va_list ap) {
return 0;
}
int sprintf(char *out, const char *fmt, ...) {
return 0;
}
int snprintf(char *out, size_t n, const char *fmt, ...) {
return 0;
}
int vsnprintf(char *out, size_t n, const char *fmt, va_list ap) {
return 0;
}
#endif

39
klib/src/stdlib.c Normal file
View file

@ -0,0 +1,39 @@
#include <am.h>
#include <klib.h>
#include <klib-macros.h>
#if !defined(__ISA_NATIVE__) || defined(__NATIVE_USE_KLIB__)
static unsigned long int next = 1;
int rand(void) {
// RAND_MAX assumed to be 32767
next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;
}
void srand(unsigned int seed) {
next = seed;
}
int abs(int x) {
return (x < 0 ? -x : x);
}
int atoi(const char* nptr) {
int x = 0;
while (*nptr == ' ') { nptr ++; }
while (*nptr >= '0' && *nptr <= '9') {
x = x * 10 + *nptr - '0';
nptr ++;
}
return x;
}
void *malloc(size_t size) {
return NULL;
}
void free(void *ptr) {
}
#endif

46
klib/src/string.c Normal file
View file

@ -0,0 +1,46 @@
#include <klib.h>
#include <stdint.h>
#if !defined(__ISA_NATIVE__) || defined(__NATIVE_USE_KLIB__)
size_t strlen(const char *s) {
return 0;
}
char *strcpy(char* dst,const char* src) {
return NULL;
}
char* strncpy(char* dst, const char* src, size_t n) {
return NULL;
}
char* strcat(char* dst, const char* src) {
return NULL;
}
int strcmp(const char* s1, const char* s2) {
return 0;
}
int strncmp(const char* s1, const char* s2, size_t n) {
return 0;
}
void* memset(void* v,int c,size_t n) {
return NULL;
}
void* memmove(void* dst,const void* src,size_t n) {
return NULL;
}
void* memcpy(void* out, const void* in, size_t n) {
return NULL;
}
int memcmp(const void* s1, const void* s2, size_t n) {
return 0;
}
#endif

5
scripts/isa/mips32.mk Normal file
View file

@ -0,0 +1,5 @@
CROSS_COMPILE := mips-linux-gnu-
COMMON_FLAGS := -march=mips32 -fno-pic -fno-delayed-branch -mno-abicalls -mno-check-zero-division -EL
CFLAGS += $(COMMON_FLAGS) -static -mno-llsc -mno-imadd -mno-mad
ASFLAGS += $(COMMON_FLAGS) -O0
LDFLAGS += -EL

5
scripts/isa/riscv32.mk Normal file
View file

@ -0,0 +1,5 @@
CROSS_COMPILE := riscv64-linux-gnu-
COMMON_FLAGS := -fno-pic -march=rv32im -mabi=ilp32
CFLAGS += $(COMMON_FLAGS) -static
ASFLAGS += $(COMMON_FLAGS) -O0
LDFLAGS += -melf32lriscv

3
scripts/isa/x86.mk Normal file
View file

@ -0,0 +1,3 @@
CFLAGS += -m32 -fno-pic -fno-omit-frame-pointer -march=i386
ASFLAGS += -m32 -fno-pic
LDFLAGS += -melf_i386

3
scripts/isa/x86_64.mk Normal file
View file

@ -0,0 +1,3 @@
CFLAGS += -m64 -fPIC -mno-sse
ASFLAGS += -m64 -fPIC
LDFLAGS += -melf_x86_64

2
scripts/mips32-nemu.mk Normal file
View file

@ -0,0 +1,2 @@
include $(AM_HOME)/scripts/isa/mips32.mk
include $(AM_HOME)/scripts/platform/nemu.mk

24
scripts/native.mk Normal file
View file

@ -0,0 +1,24 @@
AM_SRCS := native/trm.c \
native/ioe.c \
native/cte.c \
native/trap.S \
native/vme.c \
native/mpe.c \
native/platform.c \
native/native-input.c \
native/native-timer.c \
native/native-gpu.c \
native/native-audio.c \
CFLAGS += -fpie
ASFLAGS += -fpie -pie
image:
@echo + LD "->" $(IMAGE_REL)
@g++ -pie -o $(IMAGE) -Wl,--whole-archive $(LINKAGE) -Wl,-no-whole-archive -lSDL2
run: image
$(IMAGE)
gdb: image
gdb -ex "handle SIGUSR1 SIGSEGV noprint nostop" $(IMAGE)

31
scripts/platform/nemu.mk Normal file
View file

@ -0,0 +1,31 @@
AM_SRCS := nemu/trm.c \
nemu/ioe/ioe.c \
nemu/ioe/timer.c \
nemu/ioe/input.c \
nemu/ioe/gpu.c \
nemu/ioe/audio.c \
nemu/isa/$(ISA)/cte.c \
nemu/isa/$(ISA)/trap.S \
nemu/isa/$(ISA)/vme.c \
nemu/mpe.c \
nemu/isa/$(ISA)/boot/start.S
LDFLAGS += -L $(AM_HOME)/am/src/nemu/scripts
LDFLAGS += -T $(AM_HOME)/am/src/nemu/isa/$(ISA)/boot/loader.ld
LDFLAGS += --gc-sections -e _start
NEMUFLAGS += -b -l $(shell dirname $(IMAGE).elf)/nemu-log.txt $(IMAGE).bin
CFLAGS += -DMAINARGS=\"$(mainargs)\"
CFLAGS += -I$(AM_HOME)/am/src/nemu/include
.PHONY: $(AM_HOME)/am/src/nemu/trm.c
image: $(IMAGE).elf
@$(OBJDUMP) -d $(IMAGE).elf > $(IMAGE).txt
@echo + OBJCOPY "->" $(IMAGE_REL).bin
@$(OBJCOPY) -S --set-section-flags .bss=alloc,contents -O binary $(IMAGE).elf $(IMAGE).bin
run: image
$(MAKE) -C $(NEMU_HOME) ISA=$(ISA) run ARGS="$(NEMUFLAGS)"
gdb: image
$(MAKE) -C $(NEMU_HOME) ISA=$(ISA) gdb ARGS="$(NEMUFLAGS)"

17
scripts/platform/qemu.mk Normal file
View file

@ -0,0 +1,17 @@
.PHONY: build-arg
LDFLAGS += -N -Ttext-segment=0x00100000
QEMU_FLAGS += -serial mon:stdio \
-machine accel=tcg \
-smp "$(smp)" \
-drive format=raw,file=$(IMAGE)
build-arg: image
@( echo -n $(mainargs); ) | dd if=/dev/stdin of=$(IMAGE) bs=512 count=2 seek=1 conv=notrunc status=none
BOOT_HOME := $(AM_HOME)/am/src/x86/qemu/boot
image: $(IMAGE).elf
@$(MAKE) -s -C $(BOOT_HOME)
@echo + CREATE "->" $(IMAGE_REL)
@( cat $(BOOT_HOME)/bootblock.o; head -c 1024 /dev/zero; cat $(IMAGE).elf ) > $(IMAGE)

2
scripts/riscv32-nemu.mk Normal file
View file

@ -0,0 +1,2 @@
include $(AM_HOME)/scripts/isa/riscv32.mk
include $(AM_HOME)/scripts/platform/nemu.mk

3
scripts/x86-nemu.mk Normal file
View file

@ -0,0 +1,3 @@
include $(AM_HOME)/scripts/isa/x86.mk
CFLAGS += -mstringop-strategy=loop
include $(AM_HOME)/scripts/platform/nemu.mk

13
scripts/x86-qemu.mk Normal file
View file

@ -0,0 +1,13 @@
include $(AM_HOME)/scripts/isa/x86.mk
include $(AM_HOME)/scripts/platform/qemu.mk
AM_SRCS := x86/qemu/start32.S \
x86/qemu/trap32.S \
x86/qemu/trm.c \
x86/qemu/cte.c \
x86/qemu/ioe.c \
x86/qemu/vme.c \
x86/qemu/mpe.c
run: build-arg
@qemu-system-i386 $(QEMU_FLAGS)

13
scripts/x86_64-qemu.mk Normal file
View file

@ -0,0 +1,13 @@
include $(AM_HOME)/scripts/isa/x86_64.mk
include $(AM_HOME)/scripts/platform/qemu.mk
AM_SRCS := x86/qemu/start64.S \
x86/qemu/trap64.S \
x86/qemu/trm.c \
x86/qemu/cte.c \
x86/qemu/ioe.c \
x86/qemu/vme.c \
x86/qemu/mpe.c
run: build-arg
@qemu-system-x86_64 $(QEMU_FLAGS)